

Agilent Technologies
E1463A 32-Channel, 5 Amp
Form C Switch Module
User�s Manual
 Manual Part Number: E1463-90004
 Printed in U.S.A. E0201

Contents
E1463A 32-Channel Form C Switch User�s Manual

Front Matter...7
Agilent Technologies Warranty Statement ...7
Safety Symbols .. 8
Warnings .. 8
Declaration Of Conformity.. 9

Chapter 1 - Getting Started ...11
Using This Chapter .. 11
Form C Switch Description... 11

Basic Operation .. 11
Typical Configurations .. 13

Configuring the Form C Switch .. 14
Warnings and Cautions .. 14
Setting the Logical Address Switch .. 15
Setting the Interrupt Priority .. 16
Installing the Form C Switch in a Mainframe .. 17

Configuring a Terminal Module .. 18
Standard Terminal Module Description ... 18
Terminal Module Option A3G Description .. 18
Connecting User Inputs .. 19
Wiring a Terminal Module ... 20
Attaching a Terminal Module to the Form C Switch .. 22

Protecting Relays and Circuits ... 23
Relay Life Factors ... 23
Extending Relay Life ...24
Adding Relay and Circuit Protection ... 25
Maximum Allowable Module Switch Current .. 26

Programming the Form C Switch ... 27
Using SCPI Commands .. 27
Addressing the Form C Switch ... 27
Initial Operation ..29

Chapter 2 - Using the Form C Switch .. 31
Using This Chapter .. 31
Form C Switch Commands .. 31
Power-on and Reset Conditions .. 32
Module Identification ..32

Example: Module Identification (BASIC) .. 32
Example: Module Identification (TURBO C) ... 33

Switching Channels ... 34
Example: Opening/Closing Channels (BASIC) ... 34
Example: Voltage Switching (BASIC) ...34
Example: Controlling RF Switches/Step Attenuators (BASIC)35
Example: Digital Output Configuration (BASIC) ... 37
Example: Matrix Switching (BASIC) ... 37
 3

Scanning Channels .. 39
Example: Scanning Using Trig In and Trig Out Ports (BASIC)39
Example: Scanning Using the TTL Trigger Bus (BASIC) 40

Querying the Form C Switch.. 42
Example: Querying Channel Closures (BASIC) ... 42

Using the Scan Complete Bit ...42
Example: Using the Scan Complete Bit (BASIC) ... 43

Saving and Recalling States .. 44
Example: Saving and Recalling State (BASIC) .. 44

Detecting Error Conditions... 45
Example: Detecting Error Conditions (BASIC) ... 45
Example: Detecting Error Conditions (Turbo C) ... 45

Synchronizing the Form C Switch ..46
Example: Synchronizing the Form C Switch (BASIC) ..46

Chapter 3 - E1463A Command Reference ... 47
ABORt .. 50
ARM ... 51

ARM:COUNt ... 51
ARM:COUNt? ... 52

DISPlay .. 53
DISPlay:MONitor:CARD ...53
DISPlay:MONitor[:STATe] ... 54

INITiate...55
INITiate:CONTinuous ... 55
INITiate:CONTinuous? ... 56
INITiate[:IMMediate] ...56

OUTPut .. 57
OUTPut:EXTernal[:STATe] .. 57
OUTPut:EXTernal[:STATe]? .. 58
OUTPut[:STATe] ... 58
OUTPut[:STATe]? ... 59
OUTPut:TTLTrgn[:STATe] ... 59
OUTPut:TTLTrgn[:STATe]? ... 60

[ROUTe:] .. 61
[ROUTe:]CLOSe ... 61
[ROUTe:]CLOSe? ... 62
[ROUTe:]OPEN ... 62
[ROUTe:]OPEN? ... 63
[ROUTe:]SCAN ... 64

STATus... 65
STATus:OPERation:CONDition? ..67
STATus:OPERation:ENABle ... 67
STATus:OPERation:ENABle? ... 67
STATus:OPERation[:EVENt]? .. 68
STATus:PRESet ... 68

SYSTem ...69
SYSTem:CDEScription? ...69
SYSTem:CPON ..69
SYSTem:CTYPe? ... 70
SYSTem:ERRor? .. 70
4

TRIGger ...72
TRIGger[:IMMediate] .. 72
TRIGger:SOURce ... 73
TRIGger:SOURce? ... 74

Appendix A - Form C Switch Specifications ... 77

Appendix B - Register-Based Programming ... 79
About This Appendix ..79
Register Programming vs. SCPI Programming.. 79
Addressing the Registers ...79

The Base Address .. 80
Register Offset .. 81

Register Descriptions... 82
Reading and Writing to the Registers ...82
Manufacturer Identification Register ... 82
Device Type Register ... 82
Status/Control Register ... 82
Relay Control Register ... 84

Programming Examples... 85
Example: Reading the Registers (BASIC) .. 85
Example: Reading the Registers (C/HP-UX) .. 86
Example: Making Measurements (BASIC) ... 87
Example: Making Measurements (C/HP-UX) ... 88
Example: Scanning Channels (BASIC) .. 90
Example: Scanning Channels (C/HP-UX) .. 91

Appendix C - E1463A Error Messages ..93
Error Types .. 93
Error Messages.. 94

Index ... 95
 5

Notes:
6

AGILENT TECHNOLOGIES WARRANTY STATEMENT
AGILENT PRODUCT: E1463A 32-Channel, 5 Amp Form C Switch Module DURATION OF WARRANTY: 3 years
1. Agilent Technologies warrants Agilent hardware, accessories and supplies against defects in materials and workmanship for the period
specified above. If Agilent receives notice of such defects during the warranty period, Agilent will, at its option, either repair or replace
products which prove to be defective. Replacement products may be either new or like-new.
2. Agilent warrants that Agilent software will not fail to execute its programming instructions, for the period specified above, due to
defects in material and workmanship when properly installed and used. If Agilent receives notice of such defects during the warranty
period, Agilent will replace software media which does not execute its programming instructions due to such defects.
3. Agilent does not warrant that the operation of Agilent products will be interrupted or error free. If Agilent is unable, within a reasonable
time, to repair or replace any product to a condition as warranted, customer will be entitled to a refund of the purchase price upon prompt
return of the product.
4. Agilent products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.
5. The warranty period begins on the date of delivery or on the date of installation if installed by Agilent. If customer schedules or delays
Agilent installation more than 30 days after delivery, warranty begins on the 31st day from delivery.
6. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts
or supplies not supplied by Agilent, (c) unauthorized modification or misuse, (d) operation outside of the published environmental
specifications for the product, or (e) improper site preparation or maintenance.
7. TO THE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER
WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED AND AGILENT
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY
QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE.
8. Agilent will be liable for damage to tangible property per incident up to the greater of $300,000 or the actual amount paid for the product
that is the subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court
of competent jurisdiction to have been directly caused by a defective Agilent product.
9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE CUSTOMER�S
SOLE AND EXLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL AGILENT OR ITS SUPPLIERS BE
LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR
DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.
FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS
STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE
IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

U.S. Government Restricted Rights
The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial
computer software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun
1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such
Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product
involved.

 E1463A 32-Channel, 5 Amp Form C Switch Module User�s Manual
Edition 4

Copyright © 1991, 1994, 1996, 2001 Agilent Technologies, Inc. All rights reserved.
7

Safety Symbols
Instruction manual symbol affixed to
product. Indicates that the user must refer to
the manual for specific WARNING or
CAUTION information to avoid personal
injury or damage to the product.

Alternating current (AC)Instruction manual symbol affixed to
product. Indicates that the user must refer to
the manual for specific WARNING or
CAUTION information to avoid personal
injury or damage to the product.

Indicates the field wiring terminal that must
be connected to earth ground before
operating the equipment � protects against
electrical shock in case of fault.

Direct current (DC).

Warning. Risk of electrical shock.

or
Frame or chassis ground terminal�typically
connects to the equipment's metal frame.

WARNING Calls attention to a procedure, practice, or
condition that could cause bodily injury or
death.

CAUTION
Calls attention to a procedure, practice, or
condition that could possibly cause damage to
equipment or permanent loss of data.

WARNINGS
The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to
comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and
intended use of the product. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.
Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.
DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.
For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT
use repaired fuses or short-circuited fuse holders.
Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of
covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the
equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you
are qualified to do so.
DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been
impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until
safe operation can be verified by service-trained personnel. If necessary, return the product to Agilent for service and repair to ensure that
safety features are maintained.
DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and
resuscitation, is present.
DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts
or perform any unauthorized modification to the product. Return the product to Agilent for service and repair to ensure that safety features
are maintained.

Documentation History
All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edition
number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to
correct or add additional information to the current Edition of the manual. Whenever a new Edition is created, it will contain all of the
Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this documentation history page.
Edition 1 . July, 1991
Edition 2 . January, 1994
Edition 3 . January, 1996
Edition 4 . February, 2001
8

 Manufacturer�s Name: Agilent Technologies, Inc.
 Manufacturer�s Address: Basic, Emerging and Systems Technologies Product Generation Unit

815 14th Street S.W.
 Loveland, CO 80537 USA

 Declares, that the product

Product Name: 32-Channel, 5 Amp Form C Switch Module
Model Number: E1463A
Product Options: This declaration includes all options of the above product(s).

 Conforms with the following European Directives:
 The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC
 and carries the CE Marking accordingly.

 Conforms with the following product standards:
 EMC Standard Limit

IEC 61326-1:1997 + A1:1998 / EN 61326-1:1997 + A1:1998
 CISPR 11:1997 + A1:1997 / EN 55011-1991 Group 1, Class A [1]
 IEC 61000-4-2:1995+A1998 / EN 61000-4-2:1995 4 kV CD, 8 kV AD
 IEC 61000-4-3:1995 / EN 61000-4-3:1995 3 V/m, 80-1000 MHz
 IEC 61000-4-4:1995 / EN 61000-4-4:1995 0.5 kV signal lines, 1 kV power lines
 IEC 61000-4-5:1995 / EN 61000-4-5:1995 0.5 kV line-line, 1 kV line-ground
 IEC 61000-4-6:1996 / EN 61000-4-6:1996 3 V, 0.15-80 MHz
 IEC 61000-4-11:1994 / EN 61000-4-11:1994 1 cycle, 100%

 Canada: ICES-001:1998
 Australia/New Zealand: AS/NZS 2064.1

 Safety IEC 61010-1:1990+A1:1992+A2:1995 / EN 61010-1:1993+A2:1995
Canada: CSA C22.2 No. 1010.1:1992
UL 3111-1

 Supplemental Information:
 [1] The product was tested in a typical configuration with Agilent Technologies test systems.

 For further information, please contact your local Agilent Technologies sales office, agent or distributor.
Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Stra�e 130, D 71034 Böblingen, Germany

Revision: A.03 Issue Date: 09/05/00

September 5, 2000

Date Name

Quality Manager

Title

DECLARATION OF CONFORMITY
According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014
9

Notes:
10

Chapter 1
Getting Started

Using This Chapter
This chapter gives guidelines to get started using the E1463A 32-Channel,
5 Amp Form C Switch module (Form C switch), including:

� Form C Switch Description . 11
� Configuring the Form C Switch. .14
� Configuring a Terminal Module .18
� Protecting Relays and Circuits .23
� Programming the Form C Switch .27

Form C Switch Description
The E1463A 32-Channel, 5 Amp, Form C Switch module (Form C switch)
is defined as a VXIbus instrument. VXIbus plug-in modules installed in a
mainframe or used with a command module are treated as independent
instruments each having a unique secondary address.

Each instrument is also assigned a dedicated error queue, input and output
buffers, status registers and, if applicable, dedicated mainframe/command
module memory space for readings or data. An instrument may be
composed of a single plug-in module (such as a counter) or multiple plug-in
modules (for a switchbox or scanning multimeter instrument).

Basic Operation The Form C switch is a C-Size VXIbus and VMEbus register-based product
that can be used for switching, scanning, and control. The switch can
operate in a C-Size VXIbus or VMEbus mainframe. The switch has 32
channels of Form C relays. Each channel includes a relay with common (C),
normally open (NO), and normally closed (NC) contacts.

For the Form C switch, switching consists of opening or closing a channel
relay to provide alternate connections to user devices. Scanning consists
of closing a set of relays, one at a time.

As shown in Figure 1-1, the Form C switch module consists of 32 channels
(channels 00 through 31). Each channel uses a nonlatching relay. Varistors
(MOVs) can be added for relay protection and resistors or fuses can be
added for circuit protection. See "Adding Relay and Circuit Protection" for
more information on protecting relays.

External pull-up resistors can also be added for digital output applications.
See "Digital Output Configuration" for additional information about these
applications.
 Getting Started 11Chapter 1

Each channel is switched by opening or closing the appropriate channel
relay. Since the relays are nonlatching, the relays are all open during
power-up or power-down.

When a reset occurs, all channel commons (C) are connected to the
corresponding normally closed (NC) contacts. When a channel is closed,
the common contact (C) is connected to the normally open contact (NO).
User inputs and outputs to each channel are via the NO, NC, and C terminal
connectors on the terminal module.

Figure 1-1. Form C Switch Simplified Schematic

TERMINAL MODULE

C0NO

C0C

C0NC

C0N0

C0C

C0NC

NCNO

Channel 0

E1463A MODULE

Channel 15
C15N0

C15C

C15C

NO NC

C15NC

C15C

C15NO

Pads
for MOVS

Pads
for MOVS

Jumper

Channel 16

NO

C16C

C16C

C16N0

NC

C16NC

C16C

C16NO

Channel 31

NO

C31C

C31C

C31N0

NC

C31C

C31NC

C31NO
12 Getting Started Chapter 1

Typical
Configurations

The Form C switch accepts user inputs up to 125 Vdc or 250 Vrms.
Maximum rated power capacity (external load) is 150 Wdc or 1250 VA per
channel. Per module, you can switch 1500 Wdc or 12500 VA.

As noted, the switch may be configured for general purpose
switching/scanning or digital output applications. For general purpose
switching or scanning, no additional configuration is required. To configure
the switch for digital output applications, install external pull-up resistors as
required.

Multiple Form C switch modules can be configured as a switchbox
instrument. When using a switchbox instrument, multiple Form C switch
modules within the switchbox instrument can be addressed using a single
interface address. This configuration, however, requires the use of
Standard Commands for Programmable Instruments (SCPI).

General Purpose Relay
Configuration

As factory-configured, the Form C switch module is set for general purpose
relay configuration. For this configuration, you can switch channels by
opening or closing channel relays or you can scan a set of channels.

Figure 1-2 shows a typical general purpose relay configuration for channel
00. When the relay is open (NC terminal is connected to the C terminal), load
1 is connected. When the relay is closed (NO terminal is connected to the C
terminal), load 2 is connected.

Digital Output
Configuration

By installing external pull-up resistors, the Form C switch can be configured
as a digital output device. Figure 1-3 shows channel 00 configured for digital
output operation. When the channel 00 relay is open (NC connected to C),
point 1 is at +V. When the channel 00 relay is closed (NO connected to C),
point 1 is at 0V.

Figure 1-2. General Purpose Relay Configuration

C
NO

NC

Channel
00

C0NO

C0NC

C0C

TERMINAL
MODULE

2

1

+V

Relay Load
Open 1

Closed 2
 Getting Started 13Chapter 1

Configuring the Form C Switch
This section gives guidelines to configure the Form C switch, including the
following topics. See "Configuring a Terminal Module" for guidelines to
configure the terminal modules. Section topics include:

� Warnings and Cautions
� Setting the Logical Address Switch
� Setting the Interrupt Priority
� Installing the Form C Switch in a Mainframe

Warnings and
Cautions

WARNING SHOCK HAZARD. Only qualified, service-trained personnel who are
aware of the hazards involved should install, configure, or remove the
Form C switch module. Use only wire rated for the highest input
voltage and remove all power sources from the mainframe and
installed modules before installing or removing a module.

CAUTION MAXIMUM VOLTAGE/CURRENT. Maximum allowable voltage per channel
for the Form C switch is 125 Vdc or 250 Vrms. Maximum current per
channel is 5 Adc or ac rms (non-inductive). Maximum power of an external
load is 150 W or 1250 VA per channel or 1500 W or 12500 VA per module.
Exceeding any limit may damage the Form C switch.

Figure 1-3. Digital Output Configuration

MODULE
TERMINAL

C0NC

C0NO

Closed
Open

Relay

OV
+V

1

MODULE
E1463A

Channel

C

00

NC

NO

OV
0V

2

2

C0C

1

+V
14 Getting Started Chapter 1

CAUTION STATIC ELECTRICITY. Static electricity is a major cause of component
failure. To prevent damage to the electrical components in the Form C
switch, observe anti-static techniques whenever removing a module from
the mainframe or whenever working on a module. The Form C switch is
susceptible to static discharges. Do not install the Form C switch without
its metal shield attached.

Setting the Logical
Address Switch

The logical address switch (LADDR) factory setting is 120. Valid addresses
are from 1 to 255. The Form C switch can be configured as a single
instrument or as a switchbox. See Figure 1-4 for switch position information.

NOTE The address switch selected value must be a multiple of 8 if the module is
the first module in a switchbox used with a VXIbus command module and
is being instructed by SCPI commands.

Figure 1-4. Setting the Logical Address Switch

8+16+32+64=120

Logical Address = 120 Logical Address
Switch Location

128

64

32

16

8

4

2

1

C
LO

SE
D

O
PE

N CLOSED = Switch Set To 1 (ON)
OPEN = Switch Set To 0 (OFF)
 Getting Started 15Chapter 1

Setting the Interrupt
Priority

The Form C switch generates an interrupt after a channel has been closed.
These interrupts are sent to, and acknowledgments are received from, the
command module (E1406, for example) via the VXIbus backplane interrupt
lines.

For most applications where the Form C switch is installed in a C-Size
mainframe, the interrupt priority jumper does not have to be moved. This is
because the VXIbus interrupt lines have the same priority and interrupt
priority is established by installing modules in slots numerically closest to the
command module. Thus, slot 1 has a higher priority than slot 2, slot 2 has a
higher priority than slot 3, etc.

See Figure 1-5 to change the interrupt priority. You can select eight different
interrupt priority levels. Level 1 is the lowest priority and Level 7 is the
highest priority. Level X disables the interrupt. The Form C switch factory
setting is Level 1. To change the interrupt priority, remove the 4-pin jumper
from the old priority location and reinstall in the new priority location. If the
4-pin jumper is not used, the two jumper locations must have the same
interrupt priority level selected.

NOTE The interrupt priority jumper MUST be installed in position 1 when using the
E1406 Command Module. Level X interrupt priority should not be used
under normal operating conditions. Changing the priority level jumper is not
recommended. Do not change unless specifically instructed to do so.

Figure 1-5. Setting the Interrupt Priority

Interrupt22

X
1

Location
Priority

X
1

Using 2-Pin

5

3
4

6
7

Jumper

IRQ

Switch Location
Logical Address

5

3
4

6
7

Jumper
Using 4-Pin

IRQ
16 Getting Started Chapter 1

Installing the Form
C Switch in a

Mainframe

The E1463A may be installed in any slot, except slot 0, in a C-size VXIbus
mainframe. See Figure 1-6 to install the Form C switch in a mainframe.

Figure 1-6. Installing the Form C Switch in a VXIbus Mainframe

in the extraction levers.

Seat the E1463A into
the mainframe by pushing

4 Tighten the top and bottom screws
to secure the module to the

To remove the module from the mainframe,
reverse the procedure.

mainframe.

Set the extraction levers out.1

3

Slide the E1463A into any slot
(except slot 0) until the backplane
connectors touch.

2

NOTE: The extraction levers will not
seat the backplane connectors on older
VXIbus mainframes. You must manually
seat the connectors by pushing in the
module until the module's front panel is
flush with the front of the mainframe. The
extraction levers may be used to guide or
remove the Form C switch.
 Getting Started 17Chapter 1

Configuring a Terminal Module
The E1463A 32-Channel, 5 Amp, Form C Switch consists of a relay switch
card and a screw type standard terminal module. In addition, a solder eye
terminal module (Option A3G) is available. User inputs to the Form C switch
are to the normally open (NO), normally closed (NC), and common (C)
terminal connectors on the terminal module. This section shows how to
configure the terminal modules, including:

� Standard Terminal Module Description
� Terminal Module Option A3G Description
� Connecting User Inputs
� Wiring a Terminal Module
� Attaching a Terminal Module to the Form C Switch

Standard Terminal
Module Description

Figure 1-7 shows the standard screw type terminal module connectors and
associated channel numbers.

Terminal Module
Option A3G
Description

Option A3G provides a plastic terminal module housing with solder eye
connectors (see Figure 1-8) that allows you to solder wires onto connectors
which are then inserted directly into the mating connector of the Form C
switch. See Figure 1-9 for pin-outs.

Figure 1-7. Standard Screw-type Terminal Module

Figure 1-8. Option A3G Terminal Module
18 Getting Started Chapter 1

Connecting User
Inputs

Figure 1-9 shows the front panel of the E1463A and the Form C switch
connector pin-out that mates to the terminal module. Actual user inputs
are connected to the applicable terminal module.

Figure 1-9. Form C Switch Pin-outs

A32
Pin 00NO

01NO

02NO

03NO

A2
Pin

04NO

05NO

06NO

07NO

08NO

09NO

10NO

11NO

12NO

13NO

14NO

15NO C2
Pin 15C

14C

11C

13C

12C

10C

09C

06C

08C

07C

05C

04C

C32
Pin

01C

02C

03C

00C

Pin
E2 15NC

14NC

11NC

13NC

12NC

10NC

09NC

06NC

08NC

07NC

05NC

04NC

Pin
E32

01NC

03NC

02NC

00NC

A2
Pin 31NO

30NO
Pin
C2 31C

30C
Pin
E2 31NC

30NC

27NO

29NO

28NO

26NO

25NO

22NO

23NO

24NO

21NO

20NO

27C

29C

28C

26C

25C

22C

24C

23C

21C

20C

A32
Pin

18NO

19NO

17NO

16NO Pin
C32

17C

19C

18C

16C

27NC

29NC

28NC

26NC

25NC

22NC

24NC

23NC

21NC

20NC

E32
Pin

17NC

19NC

18NC

16NC
 Getting Started 19Chapter 1

Wiring a Terminal
Module

Figures 1-10 and 1-11 show how to connect field wiring to the terminal
module. When making wiring connections, be sure the wires make good
connections on screw terminals. Maximum terminal wire size is No. 16
AWG. When wiring all channels, a smaller gauge wire (No. 20 - 22 AWG)
is recommended. Wire ends should be stripped 6 mm (0.25 inch) and tinned
to prevent single strands from shorting to adjacent terminals.

Figure 1-10. Wiring a Terminal Module (continued on next page)

Tighten wraps to
secure wires

Remove Clear Cover1 Remove and Retain Wiring Exit Panel2

Make Connections3

Route WiringInstall Connectors (Solder Eye Only)4 5

A. Release Screws

B. Press Tab Forward
 and Release

Tab

Remove 1 of the 3
wire exit panels

Size 16-26
AWG

5mm
0.2"

Use wire

VW1 Flammability
Rating

Insert wire into terminal.
Tighten screw.

Screw Type Solder Eye Type
20 Getting Started Chapter 1

Figure 1-11. Wiring a Terminal Module

Module
E1463A

Replace Wiring Exit Panel

for wire exit
holes in panels

Cut required

Install the Terminal8
Module

6

possible
hole as small as
Keep wiring exit panel

Extraction
Levers

 Terminal Module onto the E1463A

 tighten screws
B. Press down and

Push in the Extraction Levers to Lock the9

onto the fixture
A. Hook in the top cover tabs

Replace Clear Cover7
 Getting Started 21Chapter 1

Attaching a
Terminal Module to
the Form C Switch

Figure 1-12 gives guidelines to attach a terminal module to the Form C
switch.

Figure 1-12. Attaching a Terminal Module to the Form C Switch

to free it from the Form C switch module.
levers and push both levers out simultaneously
use a small screwdriver to release the two extraction
To remove the terminal module from the E1463A,

onto the E1463A module.

Push in the extraction levers
to lock the terminal module

the terminal module to the
Apply gentle pressure to attach

Align the terminal module connectors
to the E1463A module connectors.

4

E1463A module.

extraction levers
to release the two

3

2

Levers
Extraction

Module
E1463A

Extraction Lever

Extend the extraction levers on the1

Use small screwdriver

terminal module.

Extraction Lever
22 Getting Started Chapter 1

Protecting Relays and Circuits
This section gives guidelines to protect relays and circuits in the Form C
switch, including:

� Relay Life Factors
� Extending Relay Life
� Adding Relay and Circuit Protection
� Maximum Allowable Module Switch Current

NOTE Relays that wear out normally or fail due to misuse should not be
considered defective and are not covered by the product's warranty.

Relay Life Factors Relays have a shorter life span than other electronic parts, such as ICs.
Because of their mechanical nature, relays usually have about 10 million
operations (at 30 operations per second) which is not quite 100 hours.
Therefore, to get the full life out of a relay in a switching module, you must
protect the relay.

Loading and Switching
Frequency

Electromechanical relays are subject to normal wear-out. Relay life depends
on several factors. The effects of loading and switching frequency are:

Relay Load. In general, higher power switching reduces relay life. In
addition, capacitive/inductive loads and high inrush currents (for example,
turning on a lamp or starting a motor) reduces relay life.

CAUTION Exceeding specified maximum inputs can cause catastrophic failure.

Switching Frequency. Relay contacts heat up when switched. As the
switching frequency increases, the contacts have less time to dissipate heat.
The resulting increase in contact temperature also reduces relay life.

End-of-Life Detection A preventive maintenance routine can prevent problems caused by
unexpected relay failure. The end of the life of the relay can be determined
by using one or more of the following three methods. The best method (or
combination of methods), as well as the failure criteria, depends on the
application in which the relay is used.

Contact Resistance. As the relay begins to wear out, its contact resistance
increases. When the resistance exceeds a predetermined value, the relay
should be replaced.

Stability of Contact Resistance. The stability of the contact resistance
decreases with age. Using this method, the contact resistance is measured
several (5-10) times and the variance of the measurements is determined.
An increase in the variance indicates deteriorating performance.

Number of Operations. Relays can be replaced after a predetermined
number of contact closures. However, this method requires knowledge of
the applied load and life specifications for the applied load.
 Getting Started 23Chapter 1

Replacement Strategy The replacement strategy depends on the application. If some relays are
used more often, or at a higher load, than the others, the relays can be
individually replaced as needed. If all the relays see similar loads and
switching frequencies, the entire circuit board can be replaced when the end
of relay life approaches. The sensitivity of the application should be weighed
against the cost of replacing relays with some useful life remaining.

Extending Relay
Life

To help ensure full life for the relays, you should consider the following
items.

Be aware of non-resistive loads. When switching inductive loads, high
voltages (thousands of volts) are produced across the relay contacts. This
causes arcing and transfer of material between contacts. Oxides and
carbides from components of the atmosphere coat the contacts and cause
high contact resistance.

The transfer of material creates hills and valleys that lock together to "weld"
contacts. Motor loads, for example, produce large inrush currents that can
be 5 to 10 times greater than the steady state current. Table 1-1 summarizes
inrush current magnitudes for different types of loads.

Be aware of heavy current applications. When a relay is used in heavy current
applications, the thin layer of gold plating on the contact may be destroyed.
This will not affect the heavy current application. However, if you go back to
a low current application, a high contact resistance may be present and the
relay cannot be used for low current applications.

Use protective circuits with relay connections. The relay manufacturer
(Aromat) recommends some protective circuits that can be used with your
relay connections. See the Aromat Technical Data Book (AGC-C0064-A-1)
for additional information. Contact Aromat at (408) 433-0466 for more
information.

Do not use capacitors. Capacitors are not to be placed across the load or
relay contacts. Capacitors may suppress arcs, but the energy stored in the
capacitors will flow through the relay contacts, welding them.

Table 1-1. Inrush Currents

Type of
Load

Inrush Current
Times

Steady State

Type of
Load

Inrush Current
Times

Steady State

Resistive 1 Incandescent Lamp 10 - 15

Capacitive 20 - 40 Mercury Lamp 3

Solenoid 10 - 20 Sodium Vapor Lamp 1 - 3

Motor 5 - 10 Transformer 5 - 15
24 Getting Started Chapter 1

Adding Relay and
Circuit Protection

The Form C switch has space for adding relay and circuit protection. Relay
protection can be added by placing a protective device across the specified
pads. This is done by adding metal oxide varistors (MOVs) between the
common (C) and normally open (NO) or normally closed (NC) terminals.
As the voltage goes up, the varistor draws current to protect the relay.

Circuit protection can be added by placing a protective device in series with
the common lead. This is done by adding a resistor between the common
(C) terminal and your circuit. When installing circuit protection, a jumper
must be removed first.

To install these protective devices it is necessary to remove the sheet metal
covers from the module. The locations for installing the devices are labeled
as shown in Table 1-2, where xx = the channel number. Do not install a
capacitor in any of these locations. Figure 1-13 shows locations where these
protective devices can be added.

Table 1-2. Protective Devices Board Locations

Relay Protection Circuit Protection

VxxO Varistor location across common (C) and normally
open (NO).

VxxC Varistor location across common (C) and normally
closed (NC).

Circuit Protection

JMxx Resistor or fuse location in series with common (C).

Figure 1-13. Adding Relay and Circuit Protection

C

Relay

NCNO

VxxC

VxxO

JM
xx

xx = Channel Number
 Getting Started 25Chapter 1

Maximum Allowable
Module Switch

Current

The Form C switch has an individual channel current specification of 5A.
However, if you apply 5A to all the channels with a relay contact resistance
of .25 Ohms, the power dissipation is 200 W. Since, for example, the
E1401B mainframe can only provide cooling for 55W per slot (to keep the
temperature rise to 10oC), this cannot be allowed to happen.

A reasonable maximum current for the entire mainframe is 50A. That is,
10 channels each carrying 5A or some combination of channels and
currents that total 50A. This will produce about 67.5 W of internal dissipation,
leading to an approximate 15oC temperature rise.

Figure 1-14 shows a typical way to derate the channels, in terms of current
throughout the channels, to keep internal power dissipation under 45 W and
67.5 W or 10oC and 15oC temperature rise, respectively.

Figure 1-14. Typical Form C Switch Allowable Switch Current

1 2 30 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

1

2

3

4

5

No. of Switches Carrying Current

C
ur

re
nt

 P
er

 S
w

itc
h-

AM
PS

=45 Watt MF Diss
=67.5 Watt MF Diss

E1401B Mainframe and
.25 Relay Contact Resistance
26 Getting Started Chapter 1

Programming the Form C Switch
This section gives guidelines to program the Form C switch, including:

� Using SCPI Commands
� Addressing the Form C Switch
� Initial Operation

Using SCPI
Commands

There are several ways you can program the Form C switch. One way is
to write directly to the registers. This method can provide better throughput
speed. However, it requires more knowledge of the Form C switch design.

Another way to program the Form C switch is to use an E1406 Command
Module and SCPI commands. With SCPI commands, the command module
parses the commands and writes to the appropriate Form C switch register.

You can use different controllers and different programming languages.
However, most examples in this manual use SCPI commands and an
HP 9000 Series 200/300 (or equivalent) computer running BASIC or a
PC with an 82350A (or equivalent) Interface Card (with command library)
running Borland��Turbo C.

NOTE Most examples in this manual use SCPI commands. See Appendix B for
information on writing directly to the registers.

To address specific channels (relays) within a Form C switch, you must
specify the SCPI command and switch channel list. Table 1-3 lists the most
commonly used commands.

Addressing the
Form C Switch

Relays (channels) within the Form C switch are addressed using the
channel_list statement. The channel_list is a combination of the switch card
number and the channel numbers. The channel_list takes the form @ccnn
where cc = switch card number (01-99) and nn = channel number (00-31).

Table 1-3. Typical SCPI Commands

SCPI Command Description

CLOSe <channel_list> Connects the normally open (NO) terminal to the
common (C) terminal for the channels specified.

OPEN <channel_list> Connects the normally closed (NC) terminal to the
common (C) terminal for the channels specified.

SCAN <channel_list> Closes the set of Form C relays, one at a time.
 Getting Started 27Chapter 1

Card Numbers The card number (cc of the channel_list) identifies the module within a
switchbox. The card number assigned depends on the switch configuration
used. Leading zeroes can be ignored for the card number.

In a single-module switchbox configuration, the card number is always 01.
In a multiple-module switchbox configuration, modules are set to successive
logical addresses.

The module with the lowest logical address is always card number 01. The
module with the next successive logical address is card number 02, etc.
Figure 1-15 illustrates card numbers and logical addresses of a typical
multiple-module switchbox configuration.

Channel Addresses The channel address (nn of the channel list) determines which relay on the
selected card will be addressed. Form C switch channel numbers are 00
through 31. The channels can be addressed using channel numbers or
channel ranges:

� single channels (@ccnn);
� multiple channels (@ccnn,ccnn,...);
� sequential channels (@ccnn:ccnn);
� groups of sequential channels (@ccnn:ccnn,ccnn:ccnn);
� or any combination of the above.

Use a comma (,) to form a channel list or a colon (:) to form a channel range.
Only valid channels can be accessed in a channel list or channel range.
Also, the channel range must be from a lower channel number to a higher
channel number. For example, CLOS(@100:215) is acceptable, but
CLOS(@215:100) generates an error.

Figure 1-15. Typical Card Numbers in a Multiple-module Switchbox

Command
Module

Note: Physical placement of the Module in the Logical Address
 order is not required, but is recommended.

Switch Module
Logical Address = 120

Secondary Address = 15

Card Number 01

Logical Address = 121
Switch Module

Switch Module
Logical Address = 122

12
8

64 32 16 8 4 2 1

Card Number 02

6412
8

1632 8 4 12

Card Number 03
6412

8

1632 8 4 12
28 Getting Started Chapter 1

Initial Operation Two example programs follow to help get you started using the Form C
switch. The first example assumes an HP 9000 Series 200/300 controller
running BASIC and a GPIB interface. The second example assumes a PC
running Borland Turbo C and an 82350A (or equivalent) Interface Card (with
command library)

Example: Closing a
Channel (BASIC)

This program closes channel 02 of a Form C switch at logical address 120
(secondary address = 120/8 = 15) and queries the channel closure state.
The result is returned to the computer and displayed (1 = channel closed,
0 = channel open). See Chapter 3 for information on the SCPI commands.

10 OUTPUT 70915;"*RST" ! Reset the module
20 OUTPUT 70915;"CLOS(@102)" ! Close channel 02
30 OUTPUT 70915;"CLOS?(@102)" ! Query channel 02 state
40 ENTER 70915;Value ! Enter result into Value
50 PRINT Value ! Display result
60 END

Example: Closing a
Channel (TURBO C)

This program closes channel 02 of a Form C switch at logical address 120
(secondary address = 120/8 = 15) and queries the channel closure state.
The result is returned to the computer and displayed (1 = channel closed,
0 = channel open). See Chapter 3 for information on the SCPI commands.

#include <stdio.h>
#include <chpib.h> /*Include file for GPIB*/

#define ISC 7L
#define FORMC 70915L /*Form C default address*/
#define TASK1 "*RST" /*Command for a reset*/
#define TASK2 "CLOSE (@102)" /*Command to close channel 02*/
#define TASK3 "CLOS? (@102)" /*Command to query channel 02*/

main()
 {
 char into[257];
 int length = 256;

/*Output commands to Form C switch*/

error_handler (IOTIMEOUT (7L,5.0), "TIMEOUT");
error_handler (IOOUTPUTS (FORMC, TASK1, 4), "OUTPUT command");
error_handler (IOOUTPUTS (FORMC, TASK2, 12), "OUTPUT command");
error_handler (IOOUTPUTS (FORMC, TASK3, 12), "OUTPUT command");

/*Enter from Form C switch*/

error_handler (IOENTERS (FORMC, into, &length), "ENTER command");
printf("Now let's see if the switch is closed: %s",into);
return;

}

int error_handler (int error, char *routine)
{

 Getting Started 29Chapter 1

char ch;
if (error != NOERR)
{

printf ("\n Error %d %s \n", error, errstr(error));
printf (" in call to function %s \n\n", routine);
printf ("Press 'Enter' to exit: ");
scanf ("%c", &ch);
exit(0);

}
return 0;

}
30 Getting Started Chapter 1

Chapter 2
Using the Form C Switch

Using This Chapter
This chapter uses typical examples to show ways to use the E1463A Form
C switch module for switching channels and scanning channels. See
Chapter 3 for command information. Chapter contents are:

� Form C Switch Commands. .31
� Power-on and Reset Conditions. .32
� Module Identification. .32
� Switching Channels .34
� Scanning Channels .39
� Querying the Form C Switch. .42
� Using the Scan Complete Bit .42
� Saving and Recalling States .44
� Detecting Error Conditions .45
� Synchronizing the Form C Switch. .46

NOTE All examples in this chapter use GPIB select code 7, primary address 09,
and secondary address 15 (LADDR = 120).

Form C Switch Commands
Table 2-1 explains some of the SCPI commands used in this chapter.
See Chapter 3 for more information on these commands.

Table 2-1. E1463A Form C Switch Commands Used in Chapter 2

SCPI Command Command Description

[ROUTe:]CLOSe <channel_list> Closes the channels in the <channel_list>

[ROUTe:]CLOSe? <channel_list> Queries the state of the channels in the <channel_list>

[ROUTe:]OPEN <channel_list> Opens the channels in the <channel_list>

[ROUTe:]OPEN? <channel_list> Queries the state of the channels in the <channel_list>

[ROUTe:]SCAN <channel_list> Closes the channels in the <channel_list>, one at a time

INITiate[:IMMediate] Starts scan sequence and closes first channel in the <channel_list>

TRIGger:SOURce BUS | EXT |
HOLD | IMM | TTLT

Selects the trigger source to advance the scan
 Using the Form C Switch 31Chapter 2

Power-on and Reset Conditions
Since the Form C switch module has nonlatching relays, all relays condition
are in the normally closed (NC) position at power-down and power-up. The
*RST command opens all channels, invalidates the current channel list for
scanning and sets the conditions shown in Table 2-2.

Module Identification
The following example programs use the *RST, *CLS, *IDN?, SYST:CTYP?,
and SYST:CDES commands to reset and identify the E1463A Form C
switch module. A typical print for the E1463A Form C switch is:

HEWLETT-PACKARD,SWITCHBOX,0,A.04.00
32 Channel General Purpose Relay
HEWLETT-PACKARD,E1463A,0,A.04.00

Example: Module
Identification

(BASIC)

10 DIM A$[50], B$[50], C$[50] IDimensions three string
variables to fifty characters

20 OUTPUT 70915;"*RST; *CLS" !Outputs the commands to reset
and clears the status register

30 OUTPUT 70915; "*IDN?" !Queries for module identification
40 ENTER 70915; A$ IEnters the results into A$
50 OUTPUT 70915; "SYST:CDES? 1" !Outputs the command for a card

description
60 ENTER 70915; B$!Enters the results into B$
70 OUTPUT 70915; "SYST:CTYP? 1" !Outputs the command for the

card type
80 ENTER 70915; C$!Enters the results into C$
90 PRINT A$, B$, C$!Prints the contents of variables

A$, B$, and C$
100 END

Table 2-2. Reset Conditions

Parameter Default Description

ARM:COUNt 1 Number of scanning cycles is 1

TRIGger:SOURce IMM Will advance scanning cycles automatically

INITiate:CONTinuous OFF Number of scanning cycles is set by ARM:COUNt

OUTPut[:STATe] OFF Trigger output from EXT or TTL sources is disabled
32 Using the Form C Switch Chapter 2

Example: Module
Identification

(TURBO C)

#include stdio.h
#include chpib.h /*Include file for GPIB*/

#define ISC 7L
#define FORMC 70915L /*Form C default address*/
#define TASK1 "*RST;*CLS;*IDN?" /*Reset, clear, and query id*/
#define TASK2 "SYST:CDES? 1" /*Command for card description*/
#define TASK3 "SYST:CTYP? 1" /*Command for card type*/

main()
{
 char into1[51], into2[51], into3[51];
 int length = 50; /*Output and enter commands to Form C*/

 error_handler (IOTIMEOUT (7L,5.0), "TIMEOUT");

 error_handler (IOOUTPUTS (FORMC, TASK1, 15), "OUTPUT command");
 error_handler (IOENTERS (FORMC, into1, &length), "ENTER command");

 error_handler (IOOUTPUTS (FORMC, TASK2, 12), "OUTPUT command");
 error_handler (IOENTERS (FORMC, into2, &length), "ENTER command");

 error_handler (IOOUTPUTS (FORMC, TASK3, 12), "OUTPUT command");
 error_handler (IOENTERS (FORMC, into3, &length), "ENTER command");

 printf("IDENTIFICATION: %s",into1);
 printf("CARD DESCRIPTION: %s",into2);
 printf("CARD TYPE: %s",into3);
 return;

}
int error_handler (int error, char *routine)
{
 char ch;
 if (error != NOERR)
 {

 printf ("\n Error %d %s \n", error, errstr(error));
 printf (" in call to GPIB function %s \n\n", routine);
 printf ("Press 'Enter' to exit: ");
 scanf ("%c", &ch);
 exit(0);

 }
return 0;
}

 Using the Form C Switch 33Chapter 2

Switching Channels
For general purpose relay operation, you can connect or disconnect a load
by opening or closing specified channel relays. By adding exterminal pull-up
resistors, the switch can be configured for digital output operations.

Use CLOS <channel_list> to connect a channel's normally open (NO)
terminal to its common (C) terminal or use OPEN channel_list to connect
a channel's normally closed (NC) contact to its common (C) terminal. The
channel_list has the form (@ccnn) where cc = card number (01-99) and
nn = channel number (00-31).

To OPEN or CLOSe multiple channels place a comma (,) between the
channel numbers. For example, to close channels 101 and 103 execute
CLOS (@101,103). To OPEN or CLOSe a continuous range of channels
place a colon (:) between the first and last channel numbers.

Example:
Opening/Closing

Channels (BASIC)

This BASIC program shows one way to close and open channel 2 on an
E1463A Form C module (card #1).

NOTE Implied commands are those that appear in square brackets ([]) in the
command syntax. The brackets are not part of the command and are not
sent to the instrument. For example, in the following program, ROUTe can
be eliminated and just the CLOSe command can be used.

10 DISP "TEST E1463A Module"
20 OUTPUT 70915; "ROUT:CLOS (@102)"
30 OUTPUT 70915; "ROUT:OPEN (@102)"
40 END

Example: Voltage
Switching (BASIC)

This example closes channel 00 of a Form C switch module to switch the
load voltage (E) from load 1 to load 2. When the channel relay is open, the
load voltage is applied to load 1. When the relay is closed, the voltage is
applied to load 2. See Figure 2-1 for typical user connections. The program
shows how to close channel 00 of the E463A Form C Switch. To open
channel 00, use OPEN (@100).

10 DISP "Testing the E1463A"
20 OUTPUT 70915; "CLOS (@100)" !Close channel 00 relay (connect

NO to C). 1 is the card number
and 00 is the channel number.

30 END
34 Using the Form C Switch Chapter 2

Example:
Controlling RF
Switches/Step

Attenuators
(BASIC)

Figure 2-2 shows one way to drive the 8761 SPDT RF Switches or 33300
Series Programmable Step Attenuators. (Figure 2-2 only shows control for
the 33300 40 dB step. Additional drive relays are required for the 10 dB and
20 dB steps.)

The 8761A and 33300A/C operate from a 12V - 15V coil voltage, while the
8761B and 33300B/D operate from a 24V - 30V coil voltage. To close
channel 00, execute the following. To open channel 00, use OPEN (@100).

10 DISP "Applying -12V"
20 OUTPUT 70915; "CLOS (@100)" !Close channel 00 relay (connect

NO to C). 1 is the card number
and 00 is the channel number.

30 END

Figure 2-1. Example: Voltage Switching

C
NO

NC

Channel
00

C0NO

C0NC

C0C

TERMINAL
MODULE

2

1 E
E

MODULE
E1463A
 Using the Form C Switch 35Chapter 2

Figure 2-2. Example: Controlling RF Switches/Step Attenuators

24V PWR SUPPLY

DUAL PWR SUPPLY

C
NC

NO

Channel
01

C1C

C1NO

C1NC

C0C

MODULE

MODULE

E1463A

C

E1463A

Channel

C

MODULE
TERMINAL

NO

NC

00
Channel

NC

C0NO

C0NC

C0C

C0NC

MODULE
TERMINAL

NO
00

C0NO

8761B RF Switch or
33300B/D Step Attenuator

6206B

(24V Coil Voltage)

EXTERNAL

+

2

1

Port 2
2

33300A/C Step Attenuator
8761A RF Switch or

33300

(12V Coil Voltage)

Port C
8761

2

1

+12V

6205C

EXTERNAL

-12V

Port 1
1

2

1

36 Using the Form C Switch Chapter 2

Example: Digital
Output

Configuration
(BASIC)

Figure 2-3 shows channel 00 configured for digital output operation.
When the channel 00 relay is open (NC connected to C), point 1 is at +V
and point 2 is at 0V. When the channel 00 relay is closed (NO connected
to C), points 1 and 2 are both at 0V. To close channel 00, execute the
following. To open channel 00, use OPEN (@100).

10 DISP "Closing channel 0"
20 OUTPUT 70915; "CLOS (@100)" !Close channel 00 relay (connect

NO to C). 1 is the card number
and 00 is the channel number.

30 END

Example: Matrix
Switching (BASIC)

The Form C switch module can be configured as a 4 x 8 single-wire matrix
to connect any combination of up to four user sources (S0, S1, S2, S3) to
any combination of up to eight user instruments (I0, I1, I1...I7) at a time.
To do this, make the connections shown in Table 2-3.

Figure 2-3. Example: Digital Output Configuration

C
NO

NC

Channel
00

C0NO

C0NC

C0C

TERMINAL
MODULE

1

2

Relay 1

Open +V
Closed OV

2

0V
OV

+V

E1463A
MODULE

Table 2-3. Matrix Switching Connections

Connect These Common (C)
Channel Numbers Together

Connect These Normally Open (NO)
Channel Numbers Together

0, 8, 16, and 24 0 - 7

1, 9, 17, and 25 8 - 15

2, 10, 18, and 26 16 - 23

3, 11, 19, and 27 24 - 31

4, 12, 20, and 28
 Using the Form C Switch 37Chapter 2

Close the channel number enclosed in the circle in Figure 2-4 to connect the
corresponding row and column. This example closes channel 25 to connect
S3 to I1 and closes channel 20 to connect S2 to I4. To close channels 20
and 25, execute the following. To open the channels, use OPEN
(@120,125).

10 DISP "Testing Switch Matrix"
20 OUTPUT 70915; "CLOS (@120,125)" !Close channels 20 and 25. 1 is

the card number; 20 and 25 are
channel numbers.

30 END

5, 13, 21, and 29

6, 14, 22, and 30

7, 15, 23, and 31

Table 2-3. Matrix Switching Connections

Connect These Common (C)
Channel Numbers Together

Connect These Normally Open (NO)
Channel Numbers Together

Figure 2-4. Example: Matrix Switching

03

11

19

27

Close this channel to connect S to I.

C
24 25

C C
26

C

S3

S2

S1

C

C

S0

I0

C

NO

NO

16

NO

08

17
C

NO

NO

09
C

NO

NO

00 01
C

NO

NO

NO

NO

C
18

C
10

C

C

NO

I2

C
02

I3

C

C
28 29

C C
30

C
31

NO

NO

NO

NO

I5

NO

NO

C

NO

C

NO

NO

20

NO

12

I4

NO

C

NO

04

C

NO

NO

21

13
C

NO

C
22

C
14

05
C

NO

I6

C
06

C

C

NO

NO

23

15

NO

I7

C

NO

07

I1
38 Using the Form C Switch Chapter 2

Scanning Channels
For the Form C switch, scanning channels consists of closing a specified set
of channels, one channel at a time. You can scan any combination of
channels for a single-module or a multiple-module switchbox. Single,
multiple, or continuous scanning modes are available. See Chapter 3 for
additional information on scanning Form C switch channels.

Channel lists can extend across boundaries. For multiple-module switchbox
instruments, the channels to be scanned can extend across switch modules.
For example, for a two-module switchbox instrument, SCAN (@100:231 will
scan all channels of both Form C switch modules.

Use ARM:COUNt <number> to set multiple/continuous scans (from 1 to
32,767 scans). Use INITiate:CONTinuous ON to set continuous scanning.
See Chapter 3 for information about these SCPI commands.

Example: Scanning
Using Trig In and

Trig Out Ports
(BASIC)

This example shows one way to synchronize instrument measurements
of a device under test (DUT) with Form C switch channel closures. For
measurement synchronization, the E1406A Command Module "Trig In"
and "Trig Out" ports are connected to the instrument "Voltmeter Complete"
and "External Trigger ports. See Figure 2-5 for typical user connections.

For this example, the normally closed (NC) contacts (channels 00-02) are
connected to ground and the measurements are made on the common (C)
contacts. The command module and instrument are connected via GPIB.
The Form C switch module has a logical address 120 (secondary address
15) and the external instrument has an address of 722.

Figure 2-5. Example: Scanning Using Trig In and Trig Out Ports

Trig

Trig

In

Out

E1406A
Command

Module

HI
HI LO

Complete

3457A Multimeter (Rear View)

LO
I

Trigger

E1463A
Module

Voltmeter External

+5V

0V

0V

+5V

NC(00,01,02)

C(00,01,02)

E1463A
FORM-C

Terminal Module
 Using the Form C Switch 39Chapter 2

10 OUTPUT 70915; "*RST;*CLS" !Reset and clear the module
20 OUTPUT 722;"TRIG EXT;DCV" !External trigger, dc volts
30 OUTPUT 722;"MEM FIFO" !Memory first in, first out
40 OUTPUT 70915;"OUTP ON" !Enable "Trig Out"
50 OUTPUT 70915;"TRIG:SOUR EXT" !External triggering
60 OUTPUT 70915;"SCAN (@100:102)"!Scan channels 00-02
70 OUTPUT 70915;"INIT" !Enable scan
80 WAIT 2 !Wait for switch closures
90 FOR Channel=1 TO 3 !Start loop
100 ENTER 722;Result !Enter result
110 PRINT Result !Display result
120 NEXT Channel !Increment count
130 END

Example: Scanning
Using the TTL

Trigger Bus
(BASIC)

This example uses the E1406A Command Module TTL trigger bus lines to
synchronize Form C channel closures to an E1412A System Multimeter.
For measurement synchronization, the E1406A TTL trigger bus line 0 is
used by the Form C module to trigger the multimeter to perform a
measurement and the E1406A TTL trigger bus line 1 is used by the
multimeter to advance the Form C scan.

Figure 2-6 shows one way to connect the Form C module to the E1412A
multimeter module. The connections shown with dotted lines are not actual
hardware connections. These connections indicate how the firmware
operates to accomplish the triggering.

Figure 2-6. Example: Scanning Using the TTL Trigger Bus

E1406A
Command Module Multimeter Module

E1412A

E1463A
Terminal Module

HI

LO

Module
E1463A

Trigger

VM

TTLTrg0

TTLTrg1

TTLTrg1

TTLTrg0

Complete

Part of VXIbus
40 Using the Form C Switch Chapter 2

The following BASIC program sets up the multimeter (GPIB address 70903)
to scan making 2-wire resistance measurements. The common terminals for
channels 0 through 2 are connected together for this example. When one of
these switches is closed (C connected to NO), different DUTs are switched
in for a measurement. Triggering is accomplished by the E1406A firmware.
The measurement is taken from the common (C) terminal.

10 ALLOCATE REAL Rdgs(1:3)
20 OUTPUT 70915; "*RST;*CLS" !Reset and clear Form C switch
30 OUTPUT 70903; "*RST;*CLS" !Reset and clear multimeter
40 OUTPUT 70903;"ABORT;:TRIG:SOUR TTLTRG0"

!Multimeter triggers on TTL
trigger line 0

50 OUTPUT 70903; "OUTP:TTLT1:STAT ON"
!Multimeter pulses TTL trigger
line 1 on measurement complete

60 OUTPUT 70903; "CONF:RES AUTO,DEF"
!Set multimeter function to
resistance, range, NPLC

70 OUTPUT 70903; "TRIG:DEL 0; COUN 3;:CAL:ZERO:AUTO ON"
!Set multimeter trigger delay,
counts, calibration state

80 OUTPUT 70903; "*OPC?" ! Check to see if multimeter is
ready. When ready, initialize
trigger 1.

90 ENTER 70903; Check
100 OUTPUT 70903; "INIT"
110 OUTPUT 70915; "OUTPUT:TTLT0:STATE ON"

!Set up the Form C. Form C
pulses TTL Trigger line 0 on
channel closed

120 OUTPUT 70915;"TRIG:SOUR TTLT1"
!Set Form C to be triggered by
TTL Trigger line 1.

130 OUTPUT 70915; "SCAN (@100:102)"
140 OUTPUT 70915; "INIT"
150 OUTPUT 70903; "FETCH?"
160 ENTER 70903; Rdgs(*)
170 PRINT Rdgs(*) !Enter and print readings
180 END
 Using the Form C Switch 41Chapter 2

Querying the Form C Switch
All query commands end with a "?". These commands are used to determine
a specific state of the module. The data is sent to the output buffer where
you can retrieve it into your computer. See Chapter 3 for more information
on these commands.

Use CLOSe? <channel_list> or OPEN? <channel_list> to query the channel
state (open/closed). CLOS? returns a "1" for channel(s) closed and a "0" for
channel(s) open. OPEN? returns a "0" for channel(s) closed and a "1" for
channel(s) open. (Commands are software queries and do not account for
relay hardware failures.)

Example: Querying
Channel Closures

(BASIC)

This example closes a range of channels and queries for the results.

10 DIM Channels$[32] !Dimensions a string variable to
32 characters

20 OUTPUT 70915;"CLOS (@100:131)" !Closes channels 00 through 31
30 OUTPUT 70915;"CLOS? (@100:131)" !Queries to see if the channels

are closed
40 ENTER 70915; Channels$!Enters the results from the switch

card into the variable Channels$
50 PRINT "Channels Closed:";Channels$! Prints the channels closed

(should print 1s)
60 END

Using the Scan Complete Bit
You can use the Scan Complete bit (bit 8) in the Operation Status Register
(in the command module) of a switchbox to determine when a scanning
cycle completes (no other bits in the register apply to the switchbox).
Bit 8 has a decimal value of 256 and you can read it directly with the
STAT:OPER? command. Refer to the STATus:OPERation[:EVENt]?
command in Chapter 3 for an example.

When enabled by the STAT:OPER:ENAB 256 command, the Scan
Complete bit will be reported as bit 7 of the Status Register. Use the GPIB
Serial Poll or the IEEE 488.2 Common Command *STB? to read the Status
Register.

When bit 7 of the Status Register is enabled by the *SRE 128 Common
Command to assert a GPIB Service Request, you can interrupt the
computer when the Scan Complete bit is set, after a scanning cycle
completes. This allows the computer to do other operations while the
scanning cycle is in progress.
42 Using the Form C Switch Chapter 2

Example: Using the
Scan Complete Bit

(BASIC)

This example monitors bit 7 in the Status Register to determine when the
scanning cycle is complete. The computer interfaces with an E1406A
Command Module over GPIB. The GPIB select code is 7, the GPIB primary
address is 09, and the GPIB secondary address is 15.

10 OUTPUT 70915;"*RST; *CLS" !Reset and clear the module
20 OUTPUT 70915;"STAT:OPER:ENAB 256"

!Enable Scan Complete Bit
30 OUTPUT 70915; "TRIG:SOUR IMM" !Set the Form C switch for

continuous triggering
50 OUTPUT 70915; "SCAN (@100:115)"!Select channels to scan
60 OUTPUT 70915; "*OPC?" !Wait for operation complete
70 ENTER 70915; A$
80 PRINT "*OPC? = ";A$
90 OUTPUT 70915;"STAT:OPER:ENAB?"!Query the contents in the

operation status register
100 ENTER 70915; A$
110 PRINT "STAT:OPER:ENAB?=";A$!Print the contents of the

operation status register
120 OUTPUT 70915; "*STB?" !Query the contents of the status

byte register
130 ENTER 70915; A$
140 PRINT "Switch Status = ";A$!Print the contents of the status

byte register
150 OUTPUT 70915; "INIT" !Start scan cycle
160 I = 0 !Initialize the value of the counter
170 WHILE (I=0) !Stay in loop until some value is

returned from the SPOLL (70915)
command

180 I = SPOLL(70915)
190 PRINT "Waiting for scan to complete: SPOLL = ";I
200 END WHILE
210 I = SPOLL(70915)
220 PRINT "Scan complete: SPOLL = ";I
230 END
 Using the Form C Switch 43Chapter 2

Saving and Recalling States
The *SAV <numeric_state> command saves the current instrument state.
The state number (0-9) is specified by the <numeric_state> parameter. The
settings saved by this command are:

� Channel relay states (open or closed)
� ARM:COUNt
� TRIGger:SOURce
� OUTPut:STATe
� INITiate:CONTinuous

The *RCL <numeric_state> command recalls the state when the last
*SAV was executed for the specified <numeric_state> parameter (0-9).
If no *SAV was executed for the <numeric_state>, *RST default settings
are used. Refer to the *SAV settings list for the settings recalled by *RCL.

Example: Saving
and Recalling State

(BASIC)

This program shows how to save and recall Form C switch states.

10 DIM A$[150] !Dimension a string variable for
150 characters

20 OUTPUT 70915; "CLOS (@100:131)"!Close channels 00 - 31 on the
Form C switch

30 OUTPUT 70915; "*SAV 5" !Save as numeric state 5
40 OUTPUT 70915 "*RST;*CLS" !Reset and clear the Form C

switch
50 OUTPUT 70915;"CLOS? (@100:131)"!Query the channels closed
60 ENTER 70915;A$
70 PRINT "Channels Closed:";A$!Print closed channels (should

print 0s)
80 OUTPUT 70915; "*RCL 5" !Recall numeric state 5
90 OUTPUT 70915 "CLOS? (100:131)" !Query to see which channels

are closed
100 ENTER 70915;A$
110 PRINT "Channels Closed:";A$!Print closed channels

(should print 1s)
120 END
44 Using the Form C Switch Chapter 2

Detecting Error Conditions
The SYSTem:ERRor? query requests a value from an instrument's error
register. This register contains an integer in the range [-32,768 to 32,767].
The response takes the form <err_number>,<err_message> where
<err_number> is the value of the instrument's error and <err_message>
is a short description of the error.

Example: Detecting
Error Conditions

(BASIC)

This BASIC program attempts an illegal channel closure and polls for an
error message.

10 DIM Err_num$[256] !Dimension a string variable for
256 characters

20 OUTPUT 70915; "CLOS (@135)" !Try to close an illegal channel
30 OUTPUT 70915; "SYST:ERR?" !Query for a system error
40 ENTER 70915; Err_num$
50 PRINT Err_num$!Print error +2001, "Invalid

channel number"
60 END

Example: Detecting
Error Conditions

(Turbo C)

This Turbo C program attempts an illegal channel closure and polls for an
error message. If no error occurs, the switchbox responds with 0, "No error".
If there has been more than one error, the instrument will respond with the
first error in its error queue. Subsequent queries continue to read the error
queue until it is empty. The maximum <err_message> string length is 255
characters.

#include stdio.h
#include chpib.h /*Include file for GPIB*/

#define ISC 7L
#define FORMC 70915L /*Form C default address*/
#define TASK1 "CLOSE (@135)"/*Command for illegal switch closure*/
#define TASK2 "SYST:ERR?" /*Command for system error*/

main()
{

char into[257];
int length = 256;

 /*Output commands to Form C*/

error_handler (IOTIMEOUT (7L,5.0), "TIMEOUT");
error_handler (IOOUTPUTS (FORMC, TASK1, 12), "OUTPUT command");
error_handler (IOOUTPUTS (FORMC, TASK2, 9), "OUTPUT command");

 /*Enter from Form C*/

error_handler (IOENTERS (FORMC, into, &length), "ENTER command");
printf("Print the errors: %s",into);
return;

}

 Using the Form C Switch 45Chapter 2

int error_handler (int error, char *routine)
{

char ch;
if (error != NOERR)
{
printf ("\n Error %d %s \n", error, errstr(error));
printf (" in call to GPIB function %s \n\n", routine);
printf ("Press 'Enter' to exit: ");

scanf ("%c", &ch);
exit(0);

}
return 0;

}

Synchronizing the Form C Switch
This section gives guidelines to synchronize a Form C switch module with a
measurement instrument.

Example:
Synchronizing the

Form C Switch
(BASIC)

This BASIC program shows one way to synchronize a Form C switch
module with a measurement instrument. In this example, the Form C
switch module switches a signal to a multimeter. The program then verifies
the channel is closed before the multimeter begins its measurement.

10 OUTPUT 70915; "CLOS (@105)" !Close channel 5
20 OUTPUT 70915; "*OPC?" !Wait for operation complete
30 ENTER 70915; Opc_value
40 OUTPUT 70915; "CLOS? (@105)" !Check to see if channel closed
50 ENTER 70915;A
60 IF A=1 THEN
70 OUTPUT 70903;"MEAS:VOLT:DC?" !When channel is closed,

measure the voltage
80 ENTER 70903; Meas_value
90 PRINT Meas_value !Print the measured voltage
100 ELSE
110 PRINT "Channel did not close"
120 END IF
130 END
46 Using the Form C Switch Chapter 2

Chapter 3
E1463A Command Reference

Using This Chapter
This chapter describes Standard Commands for Programmable Instruments
(SCPI) and summarizes IEEE 488.2 Common (*) commands applicable to
the E1463A Form C Switch Module. This chapter contains the following
sections:

� Command Types. .47
� SCPI Command Reference .49
� SCPI Commands Quick Reference .75
� IEEE 488.2 Common Commands Reference.76

Command Types
Commands are separated into two types: IEEE 488.2 Common commands
and SCPI commands.

Common Command
Format

The IEEE 488.2 standard defines the Common commands that perform
functions like reset, self-test, status byte query, etc. Common commands
are four or five characters in length, always begin with the asterisk character
(*), and may include one or more parameters. The command keyword is
separated from the first parameter by a space character. Some examples
of Common commands are shown below:

*RST *ESE <unmask> *STB?

SCPI Command
Format

The SCPI commands perform functions like closing switches, opening
switches, scanning channels, querying instrument states or retrieving data.
A subsystem command structure is a hierarchical structure that usually
consists of a top level (or root) command, one or more lower-level
commands, and their parameters. The following example shows part of a
typical subsystem:

[ROUTe:]
CLOSe<channel_list>
SCAN <channel_list>

:MODE?

[ROUTe:] is the root command, CLOSe and SCAN are second-level
commands with parameters, and :MODE? is a third-level command.
There must be a space between the second-level command (such as
CLOSe) and the parameter (<channel_list>).
 E1463A Command Reference 47Chapter 3

Command Separator A colon (:) always separates one command from the next lower-level
command as shown below:

[ROUTe:]SCAN:MODE?

Colons separate the root command from the second-level command
([ROUTe:]SCAN) and the second level from the third level (SCAN:MODE?).

Abbreviated Commands The command syntax shows most commands as a mixture of upper- and
lowercase letters. The uppercase letters indicate the abbreviated spelling for
the command. For shorter program lines, send the abbreviated form. For
better program readability, you may send the entire command. The
instrument will accept either the abbreviated form or the entire command.

For example, if the command syntax shows TRIGger, then TRIG and
TRIGGER are both acceptable forms. Other forms of TRIGger, such as
TRIGG or TRIGGE will generate an error. You may use uppercase or
lowercase letters. Therefore, TRIGGER, trigger, and TrigGeR are all
acceptable.

Implied Commands Implied commands are those that appear in square brackets ([]) in the
command syntax. (The brackets are not part of the command and are not
sent to the instrument.) Suppose you send a second-level command but do
not send the preceding implied command. In this case, the instrument
assumes you intend to use the implied command and it responds as if you
had sent it. Examine the portion of the [ROUTe:] subsystem shown below:

[ROUTe:]
CLOSe<channel_list>

The root command [ROUTe:] is an implied command (indicated by square
brackets ([])). To make a query about a channel�s present status, you can
send either of the following command statements:

ROUT:CLOSe? <channel_list> or CLOSe? <channel_list>

Variable Command
Syntax

Some commands have what appears to be a variable syntax, such as
OUTPut:TTLTrgn. In this command, the "n" is replaced by a number.
No space is left between the command and the number because the number
is not a parameter.
48 E1463A Command Reference Chapter 3

Parameters ParameterTypes. The following table contains explanations and examples of
parameter types you might see later in this chapter.

 Linking Commands Linking IEEE 488.2 Common Commands with SCPI Commands. Use a
semicolon (;) between the commands. For example, *RST;*RCL 1 or
CLOS (@101);*SAV 1

Linking Multiple SCPI Commands. Use both a semicolon (;) and a colon (:)
between the commands, such as CLOS (@101);:CLOS? (@101).

Linking Subsystem Commands. SCPI also allows several commands within
the same subsystem to be linked with a semicolon, such as ROUT:CLOS
(@101);:ROUT:CLOS? (@101) or ROUT:CLOS (@101);CLOS? (@101).

SCPI Command Reference
This section describes the Standard Commands for Programmable
Instruments (SCPI) commands for the E1463A. Commands are listed
alphabetically by subsystem and within each subsystem.

Type Explanations and Examples

Boolean Represents a single binary condition that is either true or
false (ON, OFF, 1.0). Any non-zero value is considered
true.

Discrete Selects from a finite number of values. These parameters
use mnemonics to represent each valid setting. An
example is the TRIGger:SOURce <source> command
where <source> can be BUS, EXTernal, HOLD,
IMMediate, or TTLTrgn.

Numeric Commonly used decimal representations of numbers
including optional signs, decimal points, and scientific
notation. Examples are 123, 123E2, -123, -1.23E2, .123,
1.23E-2, 1.23000E-01. Special cases include MINimum,
MAXimum, DEFault and INFinity.

Optional Parameters shown within square brackets ([]) are optional
parameters. (The brackets are not part of the command
and are not sent to the instrument.) If you do not specify a
value for an optional parameter, the instrument chooses a
default value.

For example, consider the ARM:COUNt? [<MIN | MAX>]
command. If you send the command without specifying a
parameter, the present ARM:COUNt value is returned. If
you send the MIN parameter, the command returns the
minimum count available. If you send the MAX parameter,
the command returns the maximum count available. Be
sure to place a space between the command and the
parameter.
 E1463A Command Reference 49Chapter 3

ABORt

The ABORt command stops a scan in progress when the scan is enabled
via the interface and the trigger source is TRIGger:SOURce BUS or
TRIGger:SOURce HOLD.

Subsystem Syntax ABORt

Comments ABORt Actions: The ABORt command terminates the scan and invalidates
the current channel list.

Stopping Scan Enabled Via Interface: When a scan is enabled via an
interface, an interface CLEAR command can be used to stop the scan.
When the scan is enabled via the interface and TRIG:SOUR BUS or HOLD
is set, you can use ABORt to stop the scan.

Related Commands: ARM, INITiate:CONTinuous,[ROUTe:]SCAN, TRIGger

Example Stopping a Scan with ABORt

This example stops a continuous scan in progress.

TRIG:SOUR BUS !Trigger command will be via
backplane (bus) interface (*TRG
command generates trigger)

INIT:CONT ON !Set continuous scanning
SCAN(@100:107) !Scan channels 00 to 07
INIT !Start scan, close channel 00
 .
 .
ABOR !Abort scan in progress
50 E1463A Command Reference Chapter 3

ARM

The ARM subsystem selects the number of scanning cycles (1 to 32,767)
for each INITiate command.

Subsystem Syntax ARM
:COUNt <number> MIN | MAX
:COUNt? [<MIN | MAX>]

ARM:COUNt

ARM:COUNt <number> MIN | MAX allows scanning to occur a multiple of
times (1 to 32,767) with one INITiate command when INITiate:CONTinuous
OFF | 0 is set. MIN sets 1 cycle and MAX sets 32,767 cycles.

Parameters

Comments Number of Scans: Use only numeric values between 1 and 32767, MIN, or
MAX for the number of scanning cycles.

Related Commands: ABORt, INITiate[:IMMediate]

*RST Condition: ARM:COUNt 1

Example Setting Ten Scanning Cycles

This example sets a Form C switch for 10 scans of channels 00 through 03.
When the scan sequence completes, channels 00 through 03 (relays 00
through 03) are closed.

ARM:COUN 10 !Set 10 scans per INIT command
SCAN(@100:103) !Scan channels 00 to 03
INIT !Start scan, close channel 00

Name Type Range of Values Default Value

<number> numeric 1 - 32,767 | MIN | MAX 1
 E1463A Command Reference 51Chapter 3

ARM:COUNt?

ARM:COUNt? [<MIN | MAX>] returns the current number of scanning cycles
set by ARM:COUNt. The current number of scan cycles is returned when
MIN or MAX is not specified. With MIN or MAX as a parameter, MIN returns
"1" and MAX returns "32,767".

Parameters

Comments Related Commands: INITiate[:IMMediate]

Example Querying Number of Scans

This example sets a switchbox for 10 scanning cycles and queries the
number of scan cycles set. The ARM:COUN? command returns 10.

ARM:COUN 10 !Set 10 scans per INIT command
ARM:COUN? !Query number of scans

Name Type Range of Values Default Value

MIN | MAX numeric MIN = 1, MAX = 32,767 current cycle
52 E1463A Command Reference Chapter 3

DISPlay

The DISPlay subsystem monitors the channel state of the selected module
in a switchbox. This subsystem operates with an E1406A Command Module
when a display terminal is connected.

Subsystem Syntax DISPlay
:MONitor

:CARD <number> | AUTO
[:STATe] <mode>

DISPlay:MONitor:CARD

DISPlay:MONitor:CARD <number> | AUTO selects the module in a switchbox
to be monitored.

Parameters

Comments Selecting a Specific Module to be Monitored: Use DISPlay:MONitor:CARD
to send the card number for the switchbox to be monitored.

Selecting the Present Module to be Monitored: Use DISPlay:MONitor:CARD
AUTO to select the last module addressed by a switching command (for
example, [ROUTe:]CLOSe).

*RST Conditions: DISPlay:MONitor:CARD AUTO

Example Select Module #2 in a Switchbox for Monitoring

DISP:MON:CARD 2 !Selects module #2 in a switchbox

Name Type Range of Values Default Value

<number> | AUTO numeric 1 - 99 AUTO
 E1463A Command Reference 53Chapter 3

DISPlay:MONitor[:STATe]

DISPlay:MONitor[:STATe] <mode> turns the monitor mode ON or OFF.

Parameters

Comments Monitoring Switchbox Channels: DISPlay:MONitor:STATe ON or
DISPlay:MONitor:STATe 1 turns the monitor mode ON to show the channel
state of the selected module. DISPlay:MONitor:STATe OFF or
DISPlay:MONitor:STATe 0 turns the channel monitor OFF.

Selecting the Module to be Monitored: Use DISPlay:MONitor:CARD
<number> AUTO to select the module.

Monitor Mode with a Form C Switch: When monitoring mode is turned ON,
decimal numbers representing the channels closed will be displayed at the
bottom of the display terminal. For example, if channels 3, 7, and 12 are
closed, the bottom of the display will read as follows, where the channel
numbers represent channels that are closed.

Chan , , ,3, , , , 7, , , , ,12, , , , ... etc.

*RST Condition: DISPlay:MONitor[:STATe]OFF | 0

Example Enabling Monitor Mode

DISP:MON:CARD 2 !Select module #2 in a switchbox
DISP:MON 1 !Turn monitor mode ON

Name Type Range of Values Default Value

<mode> boolean ON | OFF | 1 | 0 OFF | 0
54 E1463A Command Reference Chapter 3

INITiate

The INITiate command subsystem selects continuous scanning cycles and
starts the scanning cycle.

Subsystem Syntax INITiate
:CONTinuous <mode>
:CONTinuous?
[:IMMediate]

INITiate:CONTinuous

INITiate:CONTinuous <mode> enables or disables continuous scanning
cycles for the switchbox.

Parameters

Comments Continuous Scanning Operation: Continuous scanning is enabled with
INITiate:CONTinuous ON or INITiate:CONTinuous 1. Sending
INITiate:IMMediate closes the first channel in the channel list. Each trigger
from the source specified by TRIGger:SOURce advances the scan through
the channel list. A trigger at the end of the channel list closes the first
channel in the channel list and the scan cycle repeats.

Noncontinuous Scanning Operation: Noncontinuous scanning is enabled
with INITiate:CONTinuous OFF or INITiate:CONTinuous 0. Sending
INITiate:IMMediate closes the first channel in the channel list. Each trigger
from the source specified by TRIGger:SOURce advances the scan through
the channel list. At the end of the scanning cycle, the last channel in the
channel list is opened.

Stopping Continuous Scan: See the ABORt command.

Related Commands: ABORt, ARM:COUNt, TRIGger:SOURce

*RST Condition: INITiate:CONTinuous OFF | 0

Name Type Range of Values Default Value

<mode> boolean ON | OFF | 1 | 0 OFF | 0
 E1463A Command Reference 55Chapter 3

Example Enabling Continuous Scanning

This example enables continuous scanning of channels 00 through 03 of a
single-module switchbox. Since TRIGger:SOURce IMMediate (default) is
set, use an interface clear command (such as CLEAR) to stop the scan.

INIT:CONT ON !Enable continuous scanning
SCAN(@100:103) !Define channel list
INIT !Start scan cycle, close channel 00

INITiate:CONTinuous?

INITiate:CONTinuous? queries the scanning state. With continuous scanning
enabled, the command returns "1" (ON). With continuous scanning
disabled, the command returns "0" (OFF).

Example Querying Continuous Scanning State

This example enables continuous scanning of a switchbox and queries the
state. Since continuous scanning is enabled, INIT:CONT? returns "1".

INIT:CONT ON !Enable continuous scanning
INIT:CONT? !Query continuous scanning state

INITiate[:IMMediate]

INITiate[:IMMediate] starts the scanning process and closes the first channel
in the channel list. Successive triggers from the source specified by the
TRIGger:SOURce command advance the scan through the channel list.

Comments Starting the Scanning Cycle: INITiate:IMMediate starts scanning by closing
the first channel in the channel list. Each trigger received advances the scan
to the next channel in the channel list. An invalid channel list definition
causes an error (see [ROUTe:]SCAN).

Stopping Scanning Cycles: See the ABORt command.

Example Enabling a Single Scan

This example enables a single scan of channels 00 through 03 of a
single-module switchbox. The trigger source to advance the scan is
immediate (internal) triggering set with TRIGger:SOURceIMMediate
(default).

SCAN(@100:103) !Scan channels 00 - 03
INIT !Begin scan, close channel 00

(use immediate triggering)
56 E1463A Command Reference Chapter 3

OUTPut

The OUTPut command subsystem enables or disables the different trigger
lines of the E1406A Command Module.

Subsystem Syntax OUTPut
:EXTernal

[:STATe] <mode>
[:STATe]?

[:STATe] <mode>
[:STATe]?
:TTLTrgn (:TTLTrg0 through :TTLTrg7)

[:STATe] <mode>
[:STATe]?

OUTPut:EXTernal[:STATe]

OUTPut:EXTernal[:STATe] <mode> enables or disables the "Trig Out" port on
the E1406A Command Module.

Parameters

Comments Enabling "Trig Out" Port: When enabled, a pulse is output from the "Trig Out"
port after each scanned switchbox channel is closed. If disabled, a pulse is
not output from the port after channel closures. The output pulse is a +5V
negative-going pulse.

"Trig Out" Port Shared by Switchboxes: When enabled, the "Trig Out" port is
pulsed by any switchbox each time a scanned channel is closed. To disable
the output for a specific module send OUTPut:EXTernal[:STATe] OFF or
OUTPut:EXTernal[:STATe] 0 for that module.

One Output Selected at a Time: Only one output (TTLTrg or EXTernal) can be
enabled at one time. Enabling a different output source will automatically
disable the active output.

Related Commands: [ROUTe:]SCAN, TRIGger:SOURce

*RST Condition: OUTPut:EXTernal[:STATe] OFF (port disabled)

Example Enabling "Trig Out" Port

OUTP:EXT ON !Enable "Trig Out" port to output
pulse after each scanned channel
is closed

Name Type Range of Values Default Value

<mode> boolean ON | OFF | 1 | 0 OFF | 0
 E1463A Command Reference 57Chapter 3

OUTPut:EXTernal[:STATe]?

OUTPut:EXTernal[:STATe]? queries the present state of the "Trig Out" port
on the E1406A Command Module. The command returns "1" if the port is
enabled or "0" if the port is disabled.

Example Query "Trig Out" Port Enable State

This example enables the "Trig Out" port and queries the enable state.
OUTPut:EXTernal[:STATe]? returns "1" since the port is enabled.

OUTP:EXT ON !Enable E1406A "Trig Out" port
OUTP:EXT? !Query port enable state

OUTPut[:STATe]

OUTPut[:STATe] <mode> enables or disables the "Trig Out" port on the
E1406A Command Module. OUTPut[:STATe] ON | 1 enables the port and
OUTPut[:STATe] OFF | 0 disables the port. This command functions the
same as OUTPut:EXTernal[:STATe].

Parameters

Comments *RST Condition: OUTPut[:STATe] OFF (port disabled)

Example Enabling "Trig Out" Port

OUTP ON !Enable "Trig Out" port to output
pulse after each scanned channel
is closed

Name Type Range of Values Default Value

<mode> boolean ON | OFF | 1 | 0 OFF | 0
58 E1463A Command Reference Chapter 3

OUTPut[:STATe]?

OUTPut[:STATe]? queries the present state of the E1406A Command
Module "Trig Out" port. The command returns "1" if the port is enabled or
"0" if the port is disabled. This command functions the same as
OUTPut:EXTernal[:STATe]?.

Example Query "Trig Out" Port Enable State

This example enables the E1406A Command Module "Trig Out" port and
queries the enable state. OUTPut[:STATe]? returns "1" since the port is
enabled.

OUTP ON !Enable "Trig Out" port
OUTP? !Query port enable state

OUTPut:TTLTrgn[:STATe]

OUTPut:TTLTrgn[:STATe] <mode> selects and enables which TTL Trigger
bus line (0 to 7) will output a trigger when a channel is closed during a scan.
This is also used to disable a selected TTL Trigger bus line. "n" specifies the
TTL Trigger bus line (0 to 7) and <mode> enables (ON or 1) or disables
(OFF or 0) the specified TTL Trigger bus line.

Parameters

Comments Enabling TTL Trigger Bus: When enabled, a pulse is output from the selected
TTL Trigger bus line (0 to 7) after each channel in the switchbox is closed
during a scan. If disabled, a pulse is not output. The output is a
negative-going pulse.

One Output Selected at a Time: Only one output (TTLTrg or EXTernal) can be
enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if TTLTrg1 is the active output and
TTLTrg4 is enabled, TTLTrg1 will become disabled and TTLTrg4 will
become the active output.

Related Commands: [ROUTe:]SCAN, TRIGger:SOURce,
OUTPut:TTLTrgn[:STATe]?

*RST Condition: OUTPut:TTLTrgn[:STATe] OFF (disabled)

Name Type Range of Values Default Value

n numeric 0 to 7 N/A

<mode> boolean ON | OFF | 1 | 0 OFF | 0
 E1463A Command Reference 59Chapter 3

Example Enabling TTL Trigger Bus Line 7

OUTP:TTLT7:STAT 1 !Enable TTL Trigger bus line 7 to
output pulse after each scanned
channel is closed

OUTPut:TTLTrgn[:STATe]?

OUTPut:TTLTrgn[:STATe]? queries the present state of the specified TTL
Trigger bus line. The command returns "1" if the specified TTLTrg bus line
is enabled or "0" if disabled.

Example Query TTL Trigger Bus Enable State

This example enables TTL Trigger bus line 7 and queries the enable state.
OUTPut:TTLTrgn? returns "1" since the port is enabled.

OUTP:TTLT7:STAT 1 !Enable TTL Trigger bus line 7
OUTP:TTLT 7? !Query bus enable state
60 E1463A Command Reference Chapter 3

[ROUTe:]

The [ROUTe:] command subsystem controls switching and scanning
operations for Form C switch modules in a switchbox.

Subsystem Syntax [ROUTe:]
CLOSe <channel_list>
CLOSe? <channel_list>
OPEN <channel_list>
OPEN? <channel_list>
SCAN <channel_list>

NOTE There must be a space between the second level command (CLOS, for
example) and the parameter <channel_list>.

[ROUTe:]CLOSe

[ROUTe:]CLOSe <channel_list> closes the Form C switch channels specified
by <channel_list>. <channel_list> has the form (@ccnn) where cc = card
number (01-99) and nn = channel number (00-31).

Parameters

Comments Closing Channels:

� To close a single channel use ROUT:CLOS (@ccnn)
� To close multiple channels use ROUT:CLOS (@ccnn,ccnn,...)
� To close sequential channels use ROUT:CLOS (@ccnn:ccnn)
� To close groups of sequential channels use ROUT:CLOS

(@ccnn:ccnn,ccnn:ccnn)
� or any combination of the above

NOTE Closure order for multiple channels with a single command is not
guaranteed. Channel numbers can be in the <channel_list> in any
random order.

Related Commands: [ROUTe:]OPEN, [ROUTe:]CLOSe?

*RST Condition: All channels open.

Name Type Range of Values Default Value

<channel_list> numeric cc00 - cc31 N/A
 E1463A Command Reference 61Chapter 3

Example Closing Form C Switch Channels

This example closes channels 100 and 213 of a two-module switchbox (card
numbers 01 and 02).

CLOS(@100,213) !Close channels 100 and 213. 100
closes channel 00 of card #1 and
213 closes channel 13 of card #2.

[ROUTe:]CLOSe?

[ROUTe:]CLOSe? <channel_list> returns the current state of the channel(s)
queried. <channel_list> has the form (@ccnn) where cc = card number
(01-99) and nn = channel number (00-31). The command returns "1" if
channel(s) are closed or returns "0" if channel(s) are open.

Comments Query is Software Readback: ROUTe:CLOSe? returns the current software
state of the channel(s) specified. It does not account for relay hardware
failures.

A maximum of 128 channels can be queried at one time. If you want to query
more than 128 channels, you must enter the query data in two separate
commands.

Example Querying Channel Closure

This example closes channels 100 and 213 of a two-module switchbox and
queries channel closure. Since the channels are programmed to be closed
"1,1" is returned as a string.

CLOS(@100,213) !Close channels 100 and 213
CLOS?(@100,213) !Query channels 100 and 213

state

[ROUTe:]OPEN

[ROUTe:]OPEN <channel_list> opens the Form C switch channels specified
by <channel_list>. <channel_list> has the form (@ccnn) where cc = card
number (01-99) and nn = channel number (00-31).

Parameters

Name Type Range of Values Default Value

<channel_list> numeric cc00 - cc31 N/A
62 E1463A Command Reference Chapter 3

Comments Opening Channels:

� To open a single channel use ROUT:OPEN (@ccnn)
� To open multiple channels use ROUT:OPEN (@ccnn,ccnn,...)
� To open sequential channels use ROUT:OPEN (@ccnn:ccnn)
� To open groups of sequential channels use ROUT:OPEN

(@ccnn:ccnn,ccnn:ccnn)
� or any combination of the above

Opening Order: Opening order for multiple channels with a single command
is not guaranteed.

Related Commands: [ROUTe:]CLOSe, [ROUTe:]OPEN?

*RST Condition: All channels open.

Example Opening Form C Switch Channels

This example opens channels 100 and 213 of a two-module switchbox (card
numbers 01 and 02).

OPEN(@100,213) !Open channels 100 and 213. 100
opens channel 00 of card #1 and
213 opens channel 13 of card #2.

[ROUTe:]OPEN?

[ROUTe:]OPEN? <channel_list> returns the current state of the channel(s)
queried. <channel_list> has the form (@ccnn) where cc = card number
(01-99) and nn = channel number (00-31). The command returns "1" if
channel(s) are open or returns "0" if channel(s) are closed.

Comments Query is Software Readback: ROUTe:OPEN? returns the current software
state of the channel(s) specified. It does not account for relay hardware
failures.

A maximum of 128 channels can be queried at one time: If you want to query
more than 128 channels, you must enter the query data in two separate
commands.

Example Querying Channel Open State

This example opens channels 100 and 213 of a two-module switchbox and
queries channel 213 state. Since channel 213 is programmed to be open,
"1" is returned.

OPEN(@100,213) !Open channels 100 and 213
OPEN?(@213) !Query channel 213 state
 E1463A Command Reference 63Chapter 3

[ROUTe:]SCAN

[ROUTe:]SCAN <channel_list> defines the channels to be scanned.
<channel_list> has the form (@ccnn) where cc = card number 01-99) and
nn = channel number (00-31).

Parameters

Comments Defining Scan List: When ROUTe:SCAN is executed, the channel list is
checked for valid card and channel numbers. An error is generated for an
invalid channel list.

Scanning Channels:

� To scan a single channel use ROUT:SCAN (@ccnn)
� To scan multiple channels use ROUT:SCAN (@ccnn,ccnn,...)
� To scan sequential channels use ROUT:SCAN (@ccnn:ccnn)
� To scan groups of sequential channels use ROUT:SCAN

(@ccnn:ccnn,ccnn:ccnn)
� or any combination of the above

NOTE Channel numbers can be in the <channel_list> in any random order.

Scanning Operation: When a valid channel list is defined,
INITiate[:IMMediate] begins the scan and closes the first channel in the
<channel_list>. Successive triggers from the source specified by
TRIGger:SOURce advance the scan through the <channel list>. At the
end of the scan, the last trigger opens the last channel.

Stopping Scan: See ABORt

Related Commands: TRIGger, TRIGger:SOURce

*RST Condition: All channels open.

Example Scanning Using External Device

See "Scanning Channels" in Chapter 2 for examples of scanning programs
using external instruments.

Name Type Range of Values Default Value

<channel_list> numeric cc00 - cc31 N/A
64 E1463A Command Reference Chapter 3

STATus

The STATus subsystem reports the bit values of the OPERation Status
Register. It also allows you to unmask the bits you want reported from the
Standard Event Status Register and to read the summary bits from the
Status Byte Register.

Subsystem Syntax STATus
:OPERation

:CONDition?
:ENABle <unmask>
:ENABle?
[:EVENt?]

:PRESet

As shown in Figure 3-1, the STATus subsystem for the E1463A Form C
Switch includes the Status Byte Register, the Standard Event Status
Register, OPERation Status Register, and Output Queue. The Standard
Event Status Register (*ESE?) and the Status Byte Register (*STB?) are
under IEEE 488.2 control.

Status Byte Register

In the Status Byte register, the Operation Status bit (OPR), Request Service
bit (RQS), Standard Event bit (ESB), Message Available bit (MAV) and
Questionable Data bit (QUE) (bits 7, 6, 5, 4 and 3 respectively) can be
queried with the *STB? command.

Standard Event Status Register

In the Standard Event Status Register, you can use *ESE? to query the
"unmask" value (the bits to be logically ORed into the Summary bit).
The registers are queried using decimal-weighted bit values. Decimal
equivalents for bits 0 through 15 are shown in Figure 3-1.

OPERation Status Register

Using STATus:OPERation:ENABle 256 allows only bit 8 to generate a
Summary bit from the OPERation Status Register, since the decimal value
for bit 8 is 256. The decimal values can also used in the inverse manner to
determine the bits set from the value returned by
STATus:OPERation:EVENt? or STATus:OPERation:CONDition?.

The Form C switch driver uses only bit 8 of OPERation Status Register.
This bit is called the Scan Complete bit and is set whenever a scan operation
completes. Since completion of a scan operation is an event in time, bit 8
will never appear set when STATus:OPERation:CONDition? is queried.
However, you can find bit 8 set by using STATus:OPERation:EVENt?.
 E1463A Command Reference 65Chapter 3

Figure 3-1. E1463A Status System Register Diagram

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

+

STATus:OPERation:CONDition?

STATus:OPERation:EVENt?

STATus:OPERation:ENABle

+
"OR"

C EV EN

3
4
5
6
7

2
1
0

+
Command Error
Execution Error

Device Dependent Error
Query Error

Operation Complete

EV EN

Status
Byte

Summary Bit

Output Queue

Standard Event Status Register

*SRE <unmask>
*SRE?

*STB?

Status Byte Register

OPERation Status Register

QUE = Questionable Data

NOTE:

MAV = Message Available
ESB = Standard Event
RQS = Request Service

C = Condition Register
EV = Event Register
EN = Enable Register

<32768>
<16384>
<8192>
<4096>
<2048>
<1024>
<512>
<256>
<128>
<64>
<32>
<16>
<8>
<4>
<2>
<1>

<128>
<64>
<32>
<16>
<8>
<4>
<2>
<1>

<2>

<128>

<4>
<8>
<16>
<32>

<1>

RQS
ESB
MAV

1

7
6

3

5
4

2

0

unmask examples:

*ESE 61 unmasks standard event register bits 0,
2, 3, 4 and 5 (*ESE 128 only unmasks bit 7).

*SRE 128 unmasks the OPR bit (operation) in
 the status byte register. This is effective
 only if the STAT:OPER:ENAB 256 command
 is executed.

STAT:QUES:ENAB 256 unmasks the "Scan Complete"

Operation Complete <128>7

Register
bit

unmask
decimal
weight

+
"OR"

ESB

SRQ
SRQ

SRQ

SRQ = Interface Bus
Service Request

Other
Instrument

Other
Instrument

SRQ Line
Interface Bus

System
Controller

SPOLL

*ESE?
*ESE <unmask>

*ESR?

EN

Scan Complete

OPR

Summary
Bit

OPR = Operation Status

User Request

Request Control

"OR"

"OR"

Automatically Set at
Power On Conditions

Automatically Set by
Parser

Power On

Related Commands
Set by *OPC

are *OPC? and *WAI

Summary
Bit

 bit.

STATus:PRESet
STATus:OPERation:ENABle?
66 E1463A Command Reference Chapter 3

STATus:OPERation:CONDition?

STATus:OPERation:CONDition? returns the state of the Condition Register
in the OPERation Status Register. The state represents conditions that are
part of the instrument's operation. The switch driver does not set bit 8 in the
OPERation Status Register (see STATus:OPERation[:EVENt]?).

STATus:OPERation:ENABle

STATus:OPERation:ENABle <unmask> sets an enable mask to allow events
recorded in the Event Register of the OPERation Status Register to send a
Summary bit to the Status Byte Register (bit 7). For switch modules, when
bit 8 in the OPERation Status Register is set to 1 and bit 8 is enabled by
STATus:OPERation:ENABle, bit 7 in the Status Byte Register is set to 1.

Parameters

Comments Setting Bit 7 of the Status Byte Register: STATus:OPERation:ENABle 256
sets bit 7 (OPR) of the Status Byte Register to 1 after bit 8 (Scan Complete)
of the OPERation Status Register is set to 1.

Related Commands: [ROUTe:]SCAN

Example Enabling Operation Status Register Bit 8

STAT:OPER:ENAB 256 !Enable bit 8 of the OPERation
Status Register to be reported to
bit 7 (OPR) in the Status Byte
Register

STATus:OPERation:ENABle?

STATus:OPERation:ENABle? returns the bit value of the Enable Register
within the OPERation Status Register.

Comments Output Format: STATus:OPERation:ENABle? returns a decimal-weighted
value from 0 to 65,535 indicating the bits set to true.

Maximum Value Returned: The value returned is the value set by
STATus:OPERation:ENABle <unmask>. However, the maximum
decimal-weighted value used in this module is 256 (bit 8 in the Condition
Register within the OPERation Status Register is set to true).

Name Type Range of Values Default Value

<unmask> numeric 0 through 65,535 N/A
 E1463A Command Reference 67Chapter 3

Example Querying the Enable Register in the OPERation Status Register

STAT:OPER:ENAB? !Query the Enable Register in the
OPERation Status Register

STATus:OPERation[:EVENt]?

STATus:OPERation[:EVENt]? returns which bits in the Event Register within
the OPERation Status Register are set. The Event Register indicates that
a time-related instrument event has occurred.

Comments Setting Bit 8 of the OPERation Status Register: Bit 8 (Scan Complete) is set
to 1 after a scanning cycle completes. Bit 8 returns to 0 (zero) after sending
STATus:OPERation[:EVENt]?.

Returned Data after sending STATus:OPERation[:EVENt]?: The command
returns "+256" if bit 8 of the OPERation Status Register is set to 1. The
command returns "+0" if bit 8 of the OPERation Status Register is set to 0.

Event Register Cleared: Reading the Event Register within the OPERation
Status Register with STATus:OPERation:EVENt? clears the Event Register.

Aborting a Scan: Aborting a scan will leave bit 8 set to 0.

Related Commands: [ROUTe:]SCAN

Example Reading the OPERation Status Register After a Scanning Cycle

STAT:OPER? !Return the bit values of the Event
Register within the OPERation
Status Register

read the register value +256 shows bit 8 is set to 1.
+0 shows bit 8 is set to 0.

STATus:PRESet

STATus:PRESet affects only the Enable Register within the OPERation
Status Register by setting all Enable Register bits to 0. It does not affect
either the Status Byte Register or the Standard Event Status Register.
STATus:PRESet does not clear any of the Event Registers.
68 E1463A Command Reference Chapter 3

SYSTem

The SYSTem subsystem returns the error numbers and error messages in
the error queue of a switchbox. It can also return the types and descriptions
of modules (cards) in a switchbox.

Subsystem Syntax SYSTem
:CDEScription? <number>
:CPON <number> | ALL
:CTYPe? <number>
:ERRor?

SYSTem:CDEScription?

SYSTem:CDEScription? <number> returns the description of a selected
module (card) in a switchbox.

Parameters

Comments Form C Switch Module Description: SYSTem:CDEScription? returns:

"32 Channel General Purpose Relay"

Example Reading the Description of a Module

SYST:CDES? 1 !Return description of module
card #1

SYSTem:CPON

SYSTem:CPON <number> | ALL sets the selected module (card) in a
switchbox to its power-on state.

Parameters

Name Type Range of Values Default Value

<number> numeric 1 through 99 N/A

Name Type Range of Values Default Value

<number> numeric 1 through 99 N/A
 E1463A Command Reference 69Chapter 3

Comments Form C Switch Power-on State: The power-on state is all channels (relays)
open. SYSTem:CPON ALL and *RST open all channels of all modules in a
switchbox, while SYSTem:CPON <number> opens the channels in only the
module (card) specified in the command.

Example Setting Module to Power-on State

SYST:CPON 1 !Set card #1 to power-on state

SYSTem:CTYPe?

SYSTem:CTYPe? <number> returns the module (card) type of a selected
module in a switchbox.

Parameters

Comments E1463A Form C Switch Model Number: SYSTem:CTYPe? <number> returns

 HEWLETT-PACKARD,El463A,0,A.04.00

where the 0 after E1463A is the module serial number (always 0) and
A.04.00 is an example of the module revision code number.

Example Reading the Model Number of a Module

SYST:CTYP? 1 !Return the model number

SYSTem:ERRor?

SYSTem:ERRor? returns the error numbers and corresponding error
messages in the error queue of a switchbox. See Appendix C for a listing
of switchbox error numbers and messages.

Comments Error Numbers/Messages in the Error Queue: Each error generated by a
switchbox stores an error number and corresponding error message in the
error queue. The error message can be up to 255 characters long.

Clearing the Error Queue: An error number/message is removed from the
queue each time SYSTem:ERRor? is sent. The errors are cleared first-in,
first-out. When the queue is empty, each following SYSTem:ERRor?
command returns +0, "No error". To clear all error numbers/messages in
the queue, execute *CLS.

Name Type Range of Values Default Value

<number> numeric 1 through 99 N/A
70 E1463A Command Reference Chapter 3

Maximum Error Numbers/Messages in the Error Queue: The queue holds a
maximum of 30 error numbers/messages for each switchbox. If the queue
overflows, the last error number/message in the queue is replaced by -350,
"Too many errors". The least recent error numbers/messages remain in the
queue and the most recent errors are discarded.

Example Reading the Error Queue

SYST:ERR? !Query the error queue
 E1463A Command Reference 71Chapter 3

TRIGger

The TRIGger command subsystem controls the triggering operation of
Form C switch modules in a switchbox.

Subsystem Syntax TRIGger
[:IMMediate]
:SOURce <source>
:SOURce?

TRIGger[:IMMediate]

TRIGger[:IMMediate] causes a trigger event to occur when the defined trigger
source is TRIGger:SOURce BUS or TRIGger:SOURce HOLD.

Comments Executing TRIGger[:IMMediate]: Before TRIGger[:IMMediate] will execute, a
channel list must be defined with [ROUTe:]SCAN <channel_list> and an
INITiate[:IMMediate] must be executed

BUS or HOLD Source Remains: If selected, TRIGger:SOURce BUS or
TRIGger:SOURce HOLD remains in effect after triggering a switchbox with
TRIGger[:IMMediate].

Related Commands: INITiate, [ROUTe:]SCAN

Example Advancing Scan Using TRIGger

This example uses TRIGger[:IMMediate] to advance the scan of a
single-module switchbox from channel 00 through 03. Since
TRIGger:SOURce HOLD is set, the scan is advanced one channel
each time TRIGger is executed.

TRIG:SOUR HOLD !Set trigger source to HOLD
SCAN(@100:103) !Define channel list
INIT !Begin scan, close channel 00
loop statement !Start count loop
TRIG !Advance scan to next channel
increment loop !Increment loop count
72 E1463A Command Reference Chapter 3

TRIGger:SOURce

TRIGger:SOURce <source> specifies the trigger source to advance the
<channel_list> during scanning.

Parameters

Comments Enabling the Trigger Source: TRIGger:SOURce only selects the trigger
source. INITiate[:IMMediate] enables the trigger source.

Using the TRIGger Command: You can use TRIGger[:IMMediate] to advance
the scan when TRIGger:SOURce BUS or TRIGger:SOURce HOLD is
selected.

Using External Trigger Inputs: With TRIGger:SOURce EXTernal selected,
only one switchbox at a time can use the external trigger input at the E1406A
"Trig In" port. The trigger input is assigned to the first switchbox requesting
the external trigger source (with a TRIGger:SOURce EXTernal command).

Assigning External Trigger: A switchbox assigned with TRIGger:SOURce
EXTernal remains assigned to that source until the switchbox trigger source
is changed to BUS, HOLD, or IMMediate. When the source is changed, the
external trigger source is available to the next switchbox requesting it (with
a TRIGger:SOURce EXTernal command). If a switchbox requests an
external trigger input already assigned to another switchbox, an error is
generated.

Using Bus Triggers: To trigger the switchbox with bus triggers when
TRIGger:SOURce BUS selected, use the IEEE 488.2 common command
*TRG or the GPIB Group Execute Trigger (GET) command.

"Trig Out" Port Shared by Switchboxes: When enabled, the E1406A
Command Module "Trig Out" port is pulsed by any switchbox each time a
scanned channel is closed. To disable the output for a specific module
send OUTPut:EXTernal[:STATe] OFF or OUTPut:EXTernal[:STATe] 0 for
that module.

One Output Selected at a Time: Only one output (TTLTrg or EXTernal) can be
enabled at one time. Enabling a different output source will automatically
disable the active output.

Parameter
Name

Parameter
Type

Parameter
Description

Default
Value

BUS discrete *TRG or GET command IMM

EXTernal discrete "Trig In" port IMM

HOLD discrete Hold Triggering IMM

IMMediate discrete Immediate Triggering IMM

TTLTrgn numeric TTL Trigger Bus Line 0 - 7 IMM
 E1463A Command Reference 73Chapter 3

Related Commands: ABORt, [ROUTe:]SCAN, OUTPut

*RST Condition: TRIGger:SOURce IMMediate

Example Scanning Using External Triggers

This example uses external triggering (TRIGger:SOURce EXTernal) to scan
channels 00 through 03 of a single-module switchbox. The trigger source to
advance the scan is the input to the "Trig In" port on the E1406A Command
Module. When INIT is executed, the scan is started and channel 00 is
closed. Then, each trigger received at the "Trig In" port advances the scan
to the next channel.

TRIG:SOUR EXT !Select external triggering
SCAN(@100:103) !Scan channels 00 through 03
INIT !Begin scan, close channel 00
trigger externally !Advance scan to next channel

Example Scanning Using Bus Triggers

This example uses bus triggering (TRIG:SOUR BUS) to scan channels 00
through 03 of a single-module switchbox. The trigger source to advance the
scan is the *TRG command (as set with TRIGger:SOURce BUS). When INIT
is executed, the scan is started and channel 00 is closed. Then, each *TRG
command advances the scan to the next channel.

TRIG:SOUR BUS !Select interface (bus) triggering
SCAN(@100:103) !Scan channels 00 through 03
INIT !Begin scan, close channel 00
loop statement !Loop to scan all channels
*TRG !Advance scan using bus

triggering
increment loop !Increment loop count

TRIGger:SOURce?

TRIGger:SOURce? returns the current trigger source for the switchbox. The
command returns BUS, EXT, HOLD, IMM, or TTLTfor sources BUS,
EXTernal, HOLD, IMMediate, or TTLTrgn, respectively.

Example Querying the Trigger Source

This example sets external triggering and queries the trigger source.
Since external triggering is set, TRIG:SOUR? returns "EXT".

TRIG:SOUR EXT !Set external trigger source
TRIG:SOUR? !Query trigger source
74 E1463A Command Reference Chapter 3

SCPI Commands Quick Reference
The following table summarizes the SCPI Commands for the E1463A
Form C Switch module.

Command Description

ABORt ABORt Aborts a scan in progress

ARM :COUNt <number> MIN |MAX
:COUNt? [MIN|MAX]

Multiple scans per INIT command
Queries number of scans

DISPlay :MONitor:CARD <number> |AUTO
:MONitor[:STATe] <mode>

Selects module to be monitored
Selects monitor mode

INITiate :CONTinuous <mode>
:CONTinuous?
[:IMMediate]

Enables/disables continuous scanning
Queries continuous scan state
Starts a scanning cycle

OUTPut [:EXTernal][:STATe] <mode>
[:EXTernal][:STATe]?
[:STATe] <mode>
[:STATe]?
:TTLTrgn[:STATe] <mode>
:TTLTrgn[:STATe]?

Enables/disables the Trig Out port on the E1406
Queries the external state
Enables/disables the Trig Out port on the E1406
Queries port enable state
Enables/disables the specified TTL trigger line
Queries the specified TTL trigger line

[ROUTe:] CLOSe <channel _list>
CLOSe? <channel _list>
OPEN <channel_list>
OPEN? <channel _list>
SCAN <channel_list>

Closes channel(s)
Queries channel(s) closed
Opens channel(s)
Queries channel(s) opened
Defines channels for scanning

STATus :OPERation:CONDition?
:OPERation:ENABle <unmask>

:OPERation:ENABle?
:OPERation[:EVENt]?
:PRESet

Returns status of the Condition Register
Enables the Operation Event Register to set a bit in the
Status Register
Query the contents in the Operation Status Register
Returns status of the Operation Status Register
Sets Enable Register to 0

SYSTem :CDEScription? <number>
:CTYPe? <number>
:CPON <number> |ALL
:ERRor?

Returns description of module in a switchbox
Returns the module type
Sets specified module to its power-on state
Returns error number/message to error queue

TRIGger [:IMMediate]
:SOURce BUS
:SOURce EXTernal
:SOURce HOLD
:SOURce IMMediate
:SOURce?

Causes a trigger to occur
Trigger source is *TRG
Trigger source is Trig In (on the E1406)
Hold off triggering
Continuous (internal) triggering
Query scan trigger source
 E1463A Command Reference 75Chapter 3

IEEE 488.2 Common Commands Reference
The following table lists the IEEE 488.2 Common (*) commands accepted
by the E1463A Form C Switch module. The operation of some of these
commands is described in Chapter 2 of this manual. For more information
on Common commands, refer to the user�s manual for your mainframe or to
the ANSI/IEEE Standard 488.2-1987.

Command Title Command Description

*CLS Clear Status Register Clears all status registers (see STATus:OPERation[:EVENt]?).

*ESE Event Status Enable Enables Status Register bits.

*ESE? Event Status Enable Query Queries the current contents in the Standard Event Status Register

*ESR? Event Status Register Query Queries and clears the current contents in the Standard Event Status
Register

*IDN? Identification Query Returns identification string of the Switchbox.

*OPC Operation Complete Sets the Request for OPC flag when all pending operations have
completed. Also, sets OPC bit in the Standard Event Status Register.

*OPC? Operation Complete Query Returns a "1" to the output queue when all pending operations have
completed. Used to synchronize between multiple instruments.

*RCL Recall Instrument State Recalls previously stored configuration.

*RST Reset Opens all channels and sets the module to a known state.

*SAV Save Instrument State Stores the current configuration in specified memory.

*SRE Service Request Enable Sets the Service Request Enable Register bits and corresponding
Serial Poll Status Register bits to generate a service request.

*SRE? Service Request Enable
Query

Queries the current contents in the Service Request Enable Register.

*STB? Read Status Byte Query Queries the current contents in the Status Byte Register.

*TRG Trigger Triggers the module to advance the scan when scan is enabled and
trigger source is TRIGger:SOURce BUS.

*TST? Self-Test Query Returns +0 if self-test passes.
Returns +cc01 for firmware error.
Returns +cc02 for bus error.
Returns +cc10 if an interrupt was expected but not received.
Returns +cc11 if the busy bit was not held for 10 msec.

*WAI Wait to Continue Prevents an instrument from executing another command until the
operation caused by the previous command is finished. Since all
instruments normally perform sequential operations, executing this
command causes no change.
76 E1463A Command Reference Chapter 3

Appendix A
Form C Switch Specifications

General

Module Size / Device Type:
C-size VXIbus, Register based, A16/D16, Interrupter
(levels 1-7, jumper selectable

Relay Life (Typical):*
Condition Number of Operations
No Load 5 x 107

250 Vac, 2A, Resistive 106

250 Vac, 5A, Resistive 105

250 Vac, 2A, p.f. = 0.4 106

250 Vac, 5A, p.f. = 0.4 105

30 Vdc, 1A, Resistive >106

30 Vdc, 5A, Resistive 105

30 Vdc, 1A, L/R = 7 msec >106

30 Vdc, 5A, L/R = 7 msec 105

Power Requirements:
Voltage: +5 V +12 V
Peak Module Current (A) 0.10 0.60**
Dynamic Module Current (A) 0.10 0.01

Watts/slot: 10 W
Cooling/slot: 0.08 mm H20 @ 0.42 Liter/sec for 10oC rise
Operating Temperature: 0� - 55�C
Operating Humidity: 65% RH, 0� - 40�C

Terminals:
Screw type, maximum wire size 16 AWG

Input Characteristics

Maximum Input Voltage:
220 Vdc or 250 Vacrms Terminal to Terminal
220 Vdc or 250 Vacrms Terminal to Chassis

Maximum Switchable Power per Channel:
150 W dc; 1250 VA per switch
1500 W dc; 12,500 VA per module

Maximum Current per Channel (non-inductive):
5 Adc or acrms

DC Performance

Insulation Resistance (between any two points):
>5x106

�� at 40�C, 95% RH
>5x108

�� at 25�C, 40% RH

Closed Channel Resistance:
>100 mA: <0.250 � (<2 � at end of relay life)
<100 mA: <20 �

Maximum Thermal Offset per Channel:
<7 �V (<3 �V typical)

AC Performance

Capacitance:
<30 pF (Channel to Channel)
<40 pF (Channel to Common)
<25 pF (Common to Guard)

Crosstalk (db) (for Z1 = Zs =50 �):
Frequency <10 kHz <100 kHz <1 MHz
Channel to Channel <-83 <-63 <-43
Common to NO or NC <-80 <-60 <-40
Module to Module <-100 <-100 <-90

Bandwidth (-3 dB):
>10 MHz (typical)

* Relays are subject to normal wearout based on the number of operations.
** Absolute worst case when all relays are closed simultaneously.
 Form C Switch Specifications 77Appendix A

Notes:
78 Form C Switch Specifications Appendix A

Appendix B
Register-Based Programming

About This Appendix
This appendix contains the information you can use for register-based
programming of the E1463A Form C Switch. The contents include:

� Register Programming vs. SCPI Programming 79
� Addressing the Registers .79
� Register Descriptions .82
� Programming Examples .85

Register Programming vs. SCPI Programming
The E1463A Form C Switch is a register-based module that does not
support the VXIbus word serial protocol. When a SCPI command is sent
to the Form C switch, the E1406 Command Module parses the command
and programs the switch at the register level.

NOTE If SCPI is used to control this module, register programming is not
recommended. The SCPI driver maintains an image of the card state.
The driver will be unaware of changes to the card state if you alter the
card state by using register writes.

Register-based programming is a series of reads and writes directly to
the Form C switch registers. This increases throughput speed since it
eliminates command parsing and allows the use of an embedded controller.
Also, if slot 0, the resource manager, and the computer GPIB interface are
provided by other devices, a C-size system can be downsized by removing
the command module.

Addressing the Registers
Register addresses for register-based devices are located in the upper 25%
of VXI A16 address space. Every VXI device (up to 256 devices) is allocated
a 32-word (64-byte) block of addresses. With five registers, the E1463A
Form C Switch uses five of the 64 addresses allocated.
 Register-Based Programming 79Appendix B

The Base Address When reading or writing to a switch register, a hexadecimal or decimal
register address is specified. This address consists of a base address plus
a register offset. The base address used in register-based programming
depends on whether the A16 address space is outside or inside the E1406
Command Module.

Figure B-1 shows the register address location within A16 as it might be
mapped by an embedded controller. Figure B-2 shows the location of A16
address space in the E1406 Command Module.

A16 Address Space
Outside the Command

Module

When the E1406 Command Module is not part of your VXIbus system (see
Figure B-1), the switch�s base address is computed as:

C00016 + (LADDR * 64)16 or 49,152 + (LADDR * 64)

where C00016 (49,152) is the starting location of the register addresses,
LADDR is the switch�s logical address, and 64 is the number of address
bytes per VXI device. For example, the switch�s factory-set logical address
is 120 (7816). If this address is not changed, the switch will have a base
address of:

C00016 + (120 * 64)16 = C00016 + 1E0016 = DE0016

 or (decimal)

49,152 + (120 * 64) = 49,152 + 7680 = 56,832

A16 Address Space
Inside the Command
Module or Mainframe

When the A16 address space is inside the E1406 Command Module
(see Figure B-2), the switch�s base address is computed as:

1FC00016 + (LADDR * 64)16 or 2,080,768 + (LADDR * 64)

where 1FC00016 (2,080,768) is the starting location of the VXI A16
addresses, LADDR is the switch�s logical address, and 64 is the number of
address bytes per register-based device. Again, the switch�s factory-set
logical address is 120. If this address is not changed, the switch module will
have a base address of:

1FC00016 + (120 * 64)16 = 1FC00016 + 1E0016 = 1FDE0016

or

2,080,768 + (120 * 64) = 2,080,768 + 7680 = 2,088,448
80 Register-Based Programming Appendix B

Register Offset The register offset is the register�s location in the block of 64 address bytes.
For example, the switch�s Status Register has an offset of 0416. When you
write a command to this register, the offset is added to the base address to
form the register address:

1FDE0016 + 0416 = 1FDE0416 or 2,088,448 + 4 = 2,088,452

Figure B-1. Registers Within A16 Address Space

Figure B-2. Registers Within the E1406 A16 Address Space

Register Address = Base address + Register Offset

Base Address = COOO

OOOO 16

*

SPACE
ADDRESS

COOO 16

FFFF 16

A16

(49,152)
C000

SPACE
ADDRESS
REGISTER

 16

*

 16FFFF

ID Register

A16 REGISTER MAP
E1463A

or
49,152 + (Logical Address 64)

+ (Logical Address 64) 16

* 10

* 16

DESCRIPTION

Status/Control Register
Device Type Register

Relay Control Register 1
Relay Control Register 2

06

REGISTER
OFFSET

04
02
00

 16
 16
 16

 16
 1608

Register Address = Base address + Register Offset

2,080,768 + (Logical Address 64)

+ (Logical Address 64)

000000

IF0000

200000

 16

 16

 16

Base Address = IFC000

IFOOOO 16

 16

ADDRESS MAP
E1406

SPACE
ADDRESS

EOOOOO

FFFFFF

 16

 16

A24

 16

IFCOOO

SPACE
ADDRESS

A16

 16

200000

IFCOOO
(2,080,768)

or

*

*

 16

*
 10

 16

200000

REGISTER
ADDRESS

SPACE

 16 Relay Control Register 2
Relay Control Register 1

Device Type Register
Status/Control Register

16-BIT WORDS

E1463A
A16 REGISTER MAP

ID Register00
02
04

 16
 16
 16

08
06

 16
 16

OFFSET
REGISTER
 Register-Based Programming 81Appendix B

Register Descriptions
The Form C switch module contains two read registers, one read/write
register, and two write registers. This section describes each Form C
module register.

Reading and
Writing to the

Registers

Example programs are provided at the end of this appendix that show how
to read and write to these registers. You can read or write to the following
Form C switch module registers.

� Manufacturer Identification Register (base + 0016) (read)
� Device Type Register (base + 0216) (read)
� Status/Control Register (base + 0416) (read or write)
� Relay Control Register for Channels 00 - 15 (base + 0616) (write)
� Relay Control Register for Channels 16 - 31 (base + 0816) (write)

Manufacturer
Identification

Register

The Manufacturer Identification Register is at offset address 0016 and
returns FFFF16. This shows that Hewlett-Packard is the manufacturer and
the module is an A16 register-based module. This register is read only.

Device Type
Register

The Device Type Register is at offset address 0216 and returns 012116 for
an E1463A Form C Switch module. This register is read only.

Status/Control
Register

The Status/Control Register is at offset address 0416 and informs the user
about the module�s status and configuration. This register is read and write.

b+0016 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write Undefined

Read Manufacturer ID - Returns FFFF16 = Hewlett-Packard A16 only register-based device.

b+0216 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write Undefined

Read 012116

b+0416 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write Not Used E Not Used R

Read X MS Not Used B E X X 1 1 X X
82 Register-Based Programming Appendix B

Reading the
Status/Control Register

For Status/Control register reads, three bits are defined as follows.

� MODID Select (bit 14): 0 indicates the module has been selected
by MODID (module ID) and a 1 indicates the module has not been
selected.

� Busy (bit 7): 0 indicates the module is busy. Each relay requires
about 10 ms execution time during which the Form C switch is
busy. Bit 7 of this register is used to inform the user of a busy
condition.

� Enable (bit 6): 0 indicates the interrupt is enabled. The interrupt
generated after a channel has been closed can be disabled. Bit 6
of this register is used to inform the user of the interrupt status.

For example, if the Form C switch module is not busy (bit 7 = 1) and the
interrupt is enabled (bit 6 = 0), a read of the Status/Control Register
(base + 0416) returns FFBF.

Writing to the
Status/Control Register

You can only write to bits 0 and 6 of the Status/Control Register.

� Enable (bit 6): Writing a "1" to this bit disables the interrupt function
of the module.

� Soft Reset (bit 0): Writing a "1" to this bit soft resets the module.

NOTE When writing to the registers it is necessary to write "0" to bit 0 after the
reset has been performed before any other commands can be programmed
and executed. SCPI commands take care of this automatically.

Typically, interrupts are only disabled to "peek-poke" a module. See the
appropriate command module operating manual before disabling the
interrupt. Writing a "1" to bit 0 resets the switch (all channels open).
 Register-Based Programming 83Appendix B

Relay Control
Register

There are two relay control registers: Relay Control Register 1 (base + 0616)
and Relay Control Register 2 (base + 0816). These registers are used to
connect the common (C) to the normally open (NO) terminal. Reading any
Relay Control Register will always return FFFF16 regardless of the channel
states.

The numbers in the register maps indicate the channel number to be written
to. Writes to the Relay Control Registers enable you to open or close the
desired channel. For example, write a "1" to bit 2 of Relay Control Register
1 to close channel 02.

Relay Control Register Channels 00 - 15

b+0616 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write CH15 CH14 CH13 CH12 CH11 CH10 CH09 CH08 CH07 CH06 CH05 CH04 CH03 CH02 CH01 CH00

Read Always returns FFFF16

Relay Control Register Channels 16 - 31

b+0816 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write CH31 CH30 CH29 CH28 CH27 CH26 CH25 CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17 CH16

Read Always returns FFFF16
84 Register-Based Programming Appendix B

Programming Examples
This section provides example programs in BASIC and C/HP-UX, including:

� Example: Reading the Registers (BASIC)
� Example: Reading the Registers (C/HP-UX)
� Example: Making Measurements (BASIC)
� Example: Making Measurements (C/HP-UX)
� Example: Scanning Channels (BASIC)
� Example: Scanning Channels (C/HP-UX)

Example: Reading
the Registers

(BASIC)

This BASIC programming example reads the Manufacturer ID Register,
Device Type Register and Status Register on the Form C switch.

10 !***
20 ! ****** READREG *****
30 !***
40 OPTION BASE 1
50 !Set up arrays to store register names and addresses
60 DIM Reg_name$(1:3)[32], Reg_addr(1:3)
70 !
80 !Read register names and addresses into the arrays
90 READ Reg_name$(*)
100 READ Reg_addr(*)
110 !
120 !Set base address variable
130 Base_addr = DVAL("DE00",16)
140 !
150 !Map the A16 address space in the controller
160 !
170 CONTROL 16,25;2
180 !Call the subprogram Read_regs
190 Read_regs(Base_addr, Reg_name$(*), Reg_addr(*))
200 !
210 DATA Identification register, Device register, Status register
220 DATA 00, 02, 04
230 END

.

.

.
300 !This subprogram steps through a loop that reads each register
310 !and prints its contents
320 SUB Read_regs(Base_addr, Reg_name$(*), Reg_addr(*))
330 !
340 For Number = 1 to 3
350 Register = READIO(-16,Base_addr + Reg_addr(number))
360 PRINT Reg_name$(number); " = "; IVAL$(Register,16)
370 Next Number
380 SUBEND
 Register-Based Programming 85Appendix B

Example: Reading
the Registers

(C/HP-UX)

This C/HP-UX programming example reads the Manufacturer ID Register,
Device Type Register and Status Register on the Form C switch.

/***/
/****** readreg.c ******/
/**/

#include <sys/vxi.h> /*source file for controller VXI drivers*/
#include <fcntl.h>
#include <stdio.h>

#define logical_address 120 /*logical address of the Form C module*/

int fd;
typedef unsigned short word;
typedef struct dev_regs{ /*set up pointers*/

unsigned short id_reg;
 unsigned short device_type;

unsigned short status_reg;
unsigned short bank0_channels;

} DEV_REGS;

main()
{
/*open the controller VXI interface*/
fd=open("/dev/vxi/primary",O_RDWR);
if (fd){

perror("open");
exit(1);

 }
/*retrieve the A16 pointers*/
dev=(struct dev_regs *)vxi_get_a16_addr(fd,logical_address);

/*sub to read the registers*/
read_reg(dev);
/*END of main program*/
}

/*SUB READ_REG*/

int read_reg(reg_ptr)
DEV_REGS *reg_ptr;
{
/*read the ID register*/
printf("\n ID Register = 0x%x\n",reg_ptr->id_reg);
/*read the Device Type register*/
printf("\n Device Type Register = 0x%x\n",reg_ptr->device_type);
/*read the Status register*/
printf("\n Status Register = 0x%x\n",reg_ptr->status_reg);
return;
}

86 Register-Based Programming Appendix B

Example: Making
Measurements

(BASIC)

This BASIC programming example closes bit 1 on bank 0, waits for a
measurement to be made, and then opens the channel. You must insert
your own programming code for the measurement part of this program. For
example, if you are using the E1411B, see the E1326B/E1411B Multimeter
User's Manual for programming examples.

10 !***
20 !***** MAKEMEAS *****
30 !***
40 OPTION BASE 1
50 !Set up arrays to store register names and addresses
60 DIM Reg_name$(1:1)[32], Reg_addr(1:1)
70 !
80 !Read register names and address into the arrays
90 READ Reg_name$(*)
100 READ Reg_addr(*)
110 !
120 !Set base address variable
130 Base_addr = DVAL("DE00",16)
140 !
150 !Map the A16 address space in the controller
160 CONTROL 16,25;2
170 !Call the subprogram Make_meas
180 Make_meas(Base_addr, Reg_addr(*))
190 !
200 DATA Bank0 channels register
210 DATA 06
220 END

.

.

.
280 !This subprogram closes bit 1 of bank0 channels, waits for the
290 !channel to be closed, makes a measurement, and then opens
300 !the relay.
310 SUB Make_meas(Base_addr, Reg_addr(*))
320 !
330 WRITEIO -16, Base_addr + Reg_addr(1); 1
340 REPEAT
350 UNTIL BIT(READIO(-16,Base_addr+4),7)

.

. !Make Measurements

.
380 WRITEIO -16, Base_addr + Reg_addr(1);0
390 SUBEND
 Register-Based Programming 87Appendix B

Example: Making
Measurements

(C/HP-UX)

This C/HP-UX programming example closes bit 1 on bank 0, waits for a
measurement to be made, and then opens the channel. You must insert
your own programming code for the measurement part of this program. For
example, if you are using the E1411B, see the E1326B/E1411B Multimeter
User's Manual for programming examples.

The sub ver_time allows time for switch closures. This sub should print a
time around 10 ms. If the time is less, you must change the value of j in
the for loop. For example, instead of 10000, you might need to use 12000.

/**/
/*** makemeas.c ***/
/**/
#include <time.h>
#include <sys/vxi.h> /*source file for controller VXI drivers*/
#include <fcntl.h>
#include <stdio.h>

#define logical_address 120 /*logical address of Form C Switch*/

int fd;
typedef unsigned short word;
typedef struct dev_regs{ /*set up pointers*/

unsigned short id_reg;
 unsigned short device_type;

unsigned short status_reg;
unsigned short bank0_channels;

} DEV_REGS;

main()
{

/*open the controller VXI interface*/
fd=open("/dev/vxi/primary",O_RDWR);
if (fd){

perror("open");
exit(1);

}
/*retrieve the A16 pointers*/
dev=(struct dev_regs *)vxi_get_a16_addr(fd,logical_address);

/*sub to verify the time to close the switch*/
ver_time();
/*sub to close switch and make measurement*/
make_meas(dev);
} /* *END of main program*/

 Continued on next page
88 Register-Based Programming Appendix B

/*SUB VER_TIME*/

ver_time()
{
struct timeval first,

 second,
 lapsed;

struct timezone tzp;
gettimeofday(&first,&tzp);
for (j=0; j<=10000; j ++);
gettimeofday ($second,&tzp);

if (first.tv_usec > second.tv_usec)
{
second.tv_usec +=1000000;
second.tv_sec--;
}

lapsed.tv_usec = second.tv_usec - first.tv_usec;
lapsed.tv_sec = second.tv_sec - first.tv_sec;

printf("Elapsed time for closing a channel is: %ld sec %ld usec \n",
lapsed.tv_sec, lapsed.tv_usec);
}

/*SUB MAKE_MEAS*/

int make_meas(reg_ptr)
DEV_REGS *reg_ptr;
{

/*close bit 1 of bank0 */
reg_ptr->bank0_channels=0x0001;
for (j=0; j<=10000; j ++); /*wait for switch to close*/
printf("\n Making Measurement");

.

. /*make measurements*/

.
/*open bit 1 of bank0*/
reg_ptr->bank0_channels=0x0000;
return;
}

 Register-Based Programming 89Appendix B

Example: Scanning
Channels (BASIC)

This BASIC programming example scans through the bank 0 channels
(closing one switch at a time) and makes measurements between switch
closures. You must insert your own programming code for the measurement
part of this program. For example, if you are using the E1411B, see the
E1326B/E1411B Multimeter User's Manual for programming examples.

10 !**
20 !***** SCANNING *****
30 !**
40 OPTION BASE 1
50 !Set up arrays to store register names and addresses
60 DIM Reg_name$(1:1)[32], Reg_addr(1:1)
70 !
80 !Read register names and addresses into the arrays
90 READ Reg_name$(*)
100 READ Reg_addr(*)
110 !Set base address variable
120 Base_addr = DVAL("DE00",16)
130 !
140 !Map the A16 address space in the controller
150 CONTROL 16,25;2
160 !Call the subprogram Scan_meas
170 Scan_meas(Base_addr, Reg_addr(*))
180 !
190 DATA Bank0 channels register
200 DATA 06
210 END

.

.

.
270 !This subprogram sets all bits in bank0 open then scans through
280 !bank 0, closing one channel at a time (waits for the channel to
290 !be closed) so a measurement can be made.
300 SUB Scan_meas(Base_addr, Reg_addr(*))
310 !
320 WRITEIO -16, Base_addr + Reg_addr(1);0
330 FOR I= 0 to 15
340 WRITEIO -16, Base_addr + Reg_addr(1);2^I
350 REPEAT
360 UNTIL BIT(READIO(-16,Base_addr+4),7)
370 PRINT "Making Measurements"

.

. !Make Measurements

.
420 NEXT I
430 WRITEIO -16,Base_addr + Reg_addr(1);0
440 SUBEND
90 Register-Based Programming Appendix B

Example: Scanning
Channels (C/HP-UX)

This C/HP-UX programming example scans through the bank 0 channels
(closing one switch at a time) and makes measurements between switch
closures. You must insert your own programming code for the measurement
part of this program. For example, if you are using the E1411B, see the
E1326B/E1411B Multimeter User's Manual for programming examples.

NOTE The sub ver_time allows time for the switches to close. The program should
print a time around 10 ms. If the time is less, you must change the value of
j in the for loop. For example, instead of 10000, you might need to use
12000.

The math.h include file requires a -lm option when compiling this program.

/**/
/*** scanning.c ***/
/**/
#include <time.h>
#include <math.h> /*file to perform math functions*/
#include <sys/vxi.h> /*source file for controller VXI drivers*/
#include <fcntl.h>
#include <stdio.h>

#define logical_address 120 /*logical address of Form C Switch*/
#define lastch15

int fd, i, reg;
double y;
typedef unsigned short word;
typedef struct dev_regs{ /*set up pointers*/

unsigned short id_reg;
 unsigned short device_type;

unsigned short status_reg;
unsigned short bank0_channels;

} DEV_REGS;
main()
{
/*open the controller VXI interface*/
fd=open("/dev/vxi/primary",O_RDWR);
if (fd){

perror("open");
exit(1);
}

/*retrieve the A16 pointers*/
dev=(struct dev_regs *)vxi_get_a16_addr(fd,logical_address);

Continued on next page
 Register-Based Programming 91Appendix B

/*sub to verify the time to close the switch*/
ver_time();
/*sub to close a set of switches and make measurements*/
scan_meas(dev);
} /*END of main program*/

/*SUB VER_TIME*/
ver_time()
{
struct timeval first,

 second,
 lapsed;

struct timezone tzp;
gettimeofday(&first,&tzp);
for (j=0; j<=10000; j ++);
gettimeofday ($second,&tzp);
if (first.tv_usec > second.tv_usec)

{
second.tv_usec +=1000000;
second.tv_sec--;
}

lapsed.tv_usec = second.tv_usec - first.tv_usec;
lapsed.tv_sec = second.tv_sec - first.tv_sec;

printf("Elapsed time for closing a channel is: %ld sec %ld usec \n",
lapsed.tv_sec, lapsed.tv_usec);
}

/*SUB SCAN_MEAS*/
int scan_meas(reg_ptr)
DEV_REGS *reg_ptr;
{
/*set bank0 to 000 */

reg_ptr->bank0_channels=0x000;
i=0;
for (i=0;i=lastch;i ++)

{
y=i;
reg=pow(2.0,y);
reg_ptr-bank0_channels=reg;
for (j=0; j<=10000; j ++); /*wait for switch to be closed*/
printf("\n Making Measurement");

.

. /*make measurements*/

.
}

return;
}

92 Register-Based Programming Appendix B

Appendix C
E1463A Error Messages

Error Types
Table C-2 lists the error messages generated by the E1463A Form C Switch
module firmware when programmed by SCPI. Errors with negative values
are governed by the SCPI standard and are categorized in Table C-1. Error
numbers with positive values are not governed by the SCPI standard. See
the E1406A Command Module User�s Manual for further details on these
errors.

Table C-1. Error Types

Range Error Types Description

-199 to -100 Command Errors (syntax and parameter errors).

-299 to -200 Execution Errors (instrument driver detected errors)

-399 to -300 Device Specific Errors (instrument driver errors that
are not command nor execution errors).

-499 to -400 Query Errors (problem in querying an instrument)
 E1463A Error Messages 93Appendix C

Error Messages
Table C-2. Error Messages

Code Error Message Potential Cause(s)

-109 Missing Parameter Sending a command requiring a channel list without the channel list.

-211 Trigger Ignored Trigger received when scan not enabled. Trigger received after scan
complete. Trigger too fast.

-213 INIT Ignored Attempting to execute an INIT command when a scan is already in
progress.

-224 Illegal Parameter Value Attempting to execute a command with a parameter not applicable to
the command.

-310 System Error, Internal Driver
Error.

This error can result if an excessively long parameter list is entered.

+1500 External Trigger Source
Already Allocated

Assigning an external trigger source to a switchbox when the trigger
source has already been assigned to another switchbox.

+2000 Invalid Card Number Addressing a module (card) in a switchbox that is not part of the
switchbox.

+2001 Invalid Channel Number Attempting to address a channel of a module in a switchbox that is not
supported by the module (e.g., channel 99 of a multiplexer module).

+2006 Command Not Supported On
This Card

Sending a command to a module (card) in a switchbox that is
unsupported by the module.

+2008 Scan List Not Initialized Executing a scan without the INIT command.

+2009 Too Many Channels In Channel
List

Attempting to address more channels than available in the switchbox.

+2011 Empty Channel List No valid channels are specified in the <channel_list>.

+2012 Invalid Channel Range Invalid channel(s) specified in SCAN <channel_list> command.
Attempting to begin scanning when no valid <channel_list> is defined.

+2600 Function Not Supported On
This Card

Sending a command to a module (card) in a switchbox that is not
supported by the module or switchbox.
94 E1463A Error Messages Appendix C

Index
E1463A 32-Channel Form C Switch User�s Manual

A
abbreviated commands, 48
ABORt subsystem, 50
adding relay protection, 25
addressing registers, 79
addressing the switch, 27
ARM subsystem, 51
ARM:COUNt, 51
ARM:COUNt?, 52
attaching terminal modules, 22

B
base address, 80
base address, registers, 80

C
cautions, 14
command separator, 48
command types, 47
common commands

*CLS, 76
*ESE, 76
*ESE?, 76
*ESR?, 76
*IDN?, 76
*OPC, 76
*OPC?, 76
*RCL, 76
*RST, 76
*SAV, 76
*SRE, 76
*SRE?, 76
*STB?, 76
*TRG, 76
*TST?, 76
*WAI, 76

common commands reference, 76
common commands, format, 47
configuring terminal modules, 18
connecting user inputs, 19�20
connector pinouts, 19

D
declaration of conformity, 9
description, switch, 11
detecting error conditions, 45
Device Type register, 82
DISPlay subsystem, 53
DISPlay:MONitor:CARD, 53
DISPlay:MONitor[:STATe], 54
documentation history, 8

E
error conditions, detecting, 45
error messages, 93�94
error types, 93
examples

Advancing Scan Using TRIGger, 72
Closing a Channel (BASIC), 29
Closing a Channel (TURBO C), 29
Closing Form C Switch Channels, 62
Controlling RF Switches (BASIC), 35
Detecting Error Conditions (BASIC), 45
Detecting Error Conditions (Turbo C), 45
Digital Output Configuration (BASIC), 37
Enabling "Trig Out" Port, 57�58
Enabling a Single Scan, 56
Enabling Continuous Scanning, 56
Enabling Monitor Mode, 54
Enabling Operation Status Register Bit 8, 67
Enabling TTL Trigger Bus Line 7, 60
Making Measurements (BASIC), 87
Making Measurements (C/HP-UX), 88
Matrix Switching (BASIC), 37
Module Identification (BASIC), 32
Module Identification (TURBO C), 33
Opening Form C Switch Channels, 63
Opening/Closing Channels (BASIC), 34
Querying "Trig Out" Port Enable State, 58�59
Querying Channel Closure, 62
Querying Channel Closures (BASIC), 42
Querying Channel Open State, 63
Querying Continuous Scanning State, 56
Querying Number of Scans, 52
Index 95

E (continued)
examples (cont�d)

Querying the OPERation Status Register, 68
Querying the Trigger Source, 74
Querying TTL Trigger Bus Enable State, 60
Reading the Description of a Module, 69
Reading the Error Queue, 71
Reading the Model Number of a Module, 70
Reading the OPERation Status Register, 68
Reading the Registers (BASIC), 85
Reading the Registers (C/HP-UX), 86
Saving and Recalling State (BASIC), 44
Scanning Channels (BASIC), 90
Scanning Channels (C/HP-UX), 91
Scanning Using Bus Triggers, 74
Scanning Using External Device, 64
Scanning Using External Triggers, 74
Scanning Using Trig In/Out Ports (BASIC), 39
Scanning Using TTL Trigger Bus (BASIC), 40
Select Module for Monitoring, 53
Setting Ten Scanning Cycles, 51
Stopping a Scan with ABORt, 50
Synchronizing the Form C Switch (BASIC), 46
Using the Scan Complete Bit (BASIC), 43
Voltage Switching (BASIC), 34

extending relay life, 24

I
IEEE 488.2 commands reference, 76
implied commands, 48
INITiate subsystem, 55
INITiate:CONTinuous, 55
INITiate:CONTinuous?, 56
INITiate[:IMMediate], 56
installing switch in mainframe, 17
instrument, VXIbus, 11
interrupt priority, setting, 16

L
linking commands, 49
logical address switch, setting, 15

M
Manufacturer ID register, 82
module identification, 32

O
offset, register, 81
operation status register, 42
operation, switch, 11
Option A3G terminal module, 18
OUTPut subsystem, 57
OUTPut:EXTernal[:STATe], 57
OUTPut:EXTernal[:STATe]?, 58
OUTPut[:STATe], 58
OUTPut[:STATe]?, 59
OUTPut:TLTrgn[:STATe], 59
OUTPut:TLTrgn[:STATe]?, 60

P
parameters, 49
power-on conditions, 32
programming the switch, 27
programming, register-based, 79
protecting relays, 23

Q
querying the switch, 42

R
recalling states, 44
registers

addressing, 79
base address, 80
device type, 82
Manufacturer ID register, 82
offset, 81
Operation Status register, 42
Relay Control register, 84
register vs. SCPI programming, 79
Status�Control register, 82
types, 82

register-based programming, 79
relay configurations, 13
Relay Control register, 84
relays

adding relay protection, 25
extending relay life, 24
life factors, 23
protecting, 23
replacement strategy, 24

reset conditions, 32
restricted rights statement, 7
96 Index

R (continued)
[ROUTe:] subsystem, 61
[ROUTe:]CLOSe, 61
[ROUTe:]CLOSe?, 62
[ROUTe:]OPEN, 62
[ROUTe:]OPEN?, 63
[ROUTe:]SCAN, 64

S
safety symbols, 8
saving states, 44
scan complete bit, 42
scanning channels, 39
schematic diagram, 12
SCPI commands

abbreviated commands, 48
command reference, 49
command separator, 48
format, 47
implied commands, 48
linking commands, 49
parameters, 49
quick reference, 75
using, 27
variable command syntax, 48

specifications, 77
standard terminal module, description, 18
STATus subsystem, 65
STATus:OPERation:CONDition?, 67
STATus:OPERation:ENABle, 67
STATus:OPERation:ENABle?, 67
STATus:OPERation[:EVENt]?, 68
STATus:PRESet, 68
Status�Control register, 82
switch

addressing, 27
allowable current, 26
card numbers, 28
channel addresses, 28
configuration, 13�14
connector pinouts, 19
current, maximum, 26
description, 11
error conditions, 45
error messages, 93�94
error types, 93
installing in mainframe, 17

S (continued)
switch (cont�d)

logical address, 15
module identification, 32
operation, 11
programming, 27
power-on conditions, 32
querying, 42
recalling states, 44
relays, 12
reset conditions, 32
saving states, 44
scan complete bit, 42
scanning channels, 39
schematic, 12
SCPI commands, 31
switching channels, 34
synchronizing, 46

SYSTem subsystem, 69
SYSTem:CDEScription?, 69
SYSTem:CPON, 69
SYSTem:CTYPe?, 70
SYSTem:ERRor?, 70

T
terminal module Option A3G, description, 18
terminal modules

attaching, 22
configuring, 18
wiring, 20

TRIGger subsystem, 72
TRIGger[:IMMediate], 72
TRIGger:SOURce, 73
TRIGger:SOURce?, 74

U
user inputs, connecting, 19�20

V
variable command syntax, 48
VXIbus instrument, 11

W
WARNINGS, 8, 14
warranty statement, 7
wiring a terminal module, 20
Index 97

	Contents
	Front Matter
	Agilent Technologies Warranty Statement
	U.S. Government Restricted Rights
	Documentation History
	Safety Symbols
	Warnings
	Declaration Of Conformity

	Chapter 1 - Getting Started
	Using This Chapter
	Form C Switch Description
	Basic Operation
	Typical Configurations

	Configuring the Form C Switch
	Warnings and Cautions
	Setting the Logical Address Switch
	Setting the Interrupt Priority
	Installing the Form C Switch in a Mainframe

	Configuring a Terminal Module
	Standard Terminal Module Description
	Terminal Module Option A3G Description
	Connecting User Inputs
	Wiring a Terminal Module
	Attaching a Terminal Module to the Form C Switch

	Protecting Relays and Circuits
	Relay Life Factors
	Extending Relay Life
	Adding Relay and Circuit Protection
	Maximum Allowable Module Switch Current

	Programming the Form C Switch
	Using SCPI Commands
	Addressing the Form C Switch
	Initial Operation

	Chapter 2 - Using the Form C Switch
	Using This Chapter
	Form C Switch Commands
	Power-on and Reset Conditions
	Module Identification
	Example: Module Identification (BASIC)
	Example: Module Identification (TURBO C)

	Switching Channels
	Example: Opening/Closing Channels (BASIC)
	Example: Voltage Switching (BASIC)
	Example: Controlling RF Switches/Step Attenuators (BASIC)
	Example: Digital Output Configuration (BASIC)
	Example: Matrix Switching (BASIC)

	Scanning Channels
	Example: Scanning Using Trig In and Trig Out Ports (BASIC)
	Example: Scanning Using the TTL Trigger Bus (BASIC)

	Querying the Form C Switch
	Example: Querying Channel Closures (BASIC)

	Using the Scan Complete Bit
	Example: Using the Scan Complete Bit (BASIC)

	Saving and Recalling States
	Example: Saving and Recalling State (BASIC)

	Detecting Error Conditions
	Example: Detecting Error Conditions (BASIC)
	Example: Detecting Error Conditions (Turbo C)

	Synchronizing the Form C Switch
	Example: Synchronizing the Form C Switch (BASIC)

	Chapter 3 - E1463A Command Reference
	Using This Chapter
	Command Types
	Common Command Format
	SCPI Command Format

	SCPI Command Reference
	ABORt
	ARM
	ARM:COUNt
	ARM:COUNt?

	DISPlay
	DISPlay:MONitor:CARD
	DISPlay:MONitor[:STATe]

	INITiate
	INITiate:CONTinuous
	INITiate:CONTinuous?
	INITiate[:IMMediate]

	OUTPut
	OUTPut:EXTernal[:STATe]
	OUTPut:EXTernal[:STATe]?
	OUTPut[:STATe]
	OUTPut[:STATe]?
	OUTPut:TTLTrgn[:STATe]
	OUTPut:TTLTrgn[:STATe]?

	[ROUTe:]
	[ROUTe:]CLOSe
	[ROUTe:]CLOSe?
	[ROUTe:]OPEN
	[ROUTe:]OPEN?
	[ROUTe:]SCAN

	STATus
	STATus:OPERation:CONDition?
	STATus:OPERation:ENABle
	STATus:OPERation:ENABle?
	STATus:OPERation[:EVENt]?
	STATus:PRESet

	SYSTem
	SYSTem:CDEScription?
	SYSTem:CPON
	SYSTem:CTYPe?
	SYSTem:ERRor?

	TRIGger
	TRIGger[:IMMediate]
	TRIGger:SOURce
	TRIGger:SOURce?

	SCPI Commands Quick Reference
	IEEE 488.2 Common Commands Reference

	Appendix A - Form C Switch Specifications
	Appendix B - Register-Based Programming
	About This Appendix
	Register Programming vs. SCPI Programming
	Addressing the Registers
	The Base Address
	Register Offset

	Register Descriptions
	Reading and Writing to the Registers
	Manufacturer Identification Register
	Device Type Register
	Status/Control Register
	Relay Control Register

	Programming Examples
	Example: Reading the Registers (BASIC)
	Example: Reading the Registers (C/HP-UX)
	Example: Making Measurements (BASIC)
	Example: Making Measurements (C/HP-UX)
	Example: Scanning Channels (BASIC)
	Example: Scanning Channels (C/HP-UX)

	Appendix C - E1463A Error Messages
	Error Types
	Error Messages

	Index

