i

Agilent Technologies
E1463A 32-Channel, 5 Amp

Form C Switch Module
User’s Manual

Agilent Technologies

Manual Part Number: E1463-90004
Printed in U.S.A. E0201

Contents
E1463A 32-Channel Form C Switch User’s Manual

Front Matter..........ii s 7
Agilent Technologies Warranty Statementcccooiiiiiiiiiii e, 7
SAfELY SYMDOIS ..ot e e 8
LTAT = 15 11 e T 8
Declaration Of CONfOIMILYuuiiiiiiiei e e e e e 9

Chapter 1 - Getting Startedccccciiiiiiiiii s 1
USING ThiS Chapter ..o e e e aeeae s 11
Form C SwitCh DeSCHPLION.......ciiiiiiiiii e a e 11

BasiC OPerationcccuuiiiiiiiiiee e 11
Typical Configurationsc..uviiiiiiiiee e 13
Configuring the FOrm C SWItChoooiiiiiiii e 14
Warnings and CautioNSuuiiiiiiiii i 14
Setting the Logical Address SWItChcceeeiiiiiiiiiii e 15
Setting the Interrupt Priorityoooiiiiiiie e 16
Installing the Form C Switch in a Mainframeccccccieiiiiiiiiieee e, 17
Configuring @ Terminal MOAUIEcooiiiiiiiiiieee e 18
Standard Terminal Module DesCriptionccooviiiiiiiiiiiiiice e 18
Terminal Module Option A3G DescCriptionccvvvieiiiiiiiiiiiieieeee e 18
ConNeCting USEr INPULS ...vviiiiiiieeeeee it eea e 19
Wiring @ Terminal MOAUIEo 20
Attaching a Terminal Module to the Form C Switchccccoiiiiiii s 22
Protecting Relays and CirCUILScooiiiiiiiiiiiiiieee e 23
Relay Life FACIOrSuuuiiiiiiii ittt a e 23
Extending Relay Lifeueeiiiiiiiiiiiiceee e 24
Adding Relay and Circuit Protectioncccocoiiiiiiiiiiie e 25
Maximum Allowable Module Switch Currentccccccviiiiiieiiiiie e, 26
Programming the Form C SWitCh..........cccuuiiiiiiii e, 27
UsiNg SCPI COMMANGS ...voiiiiiiieiii ittt a e e eaeaae s 27
Addressing the FOrm C SWItChooiiiiiiiiiiiieeeee e 27
INitial OPEIrAtIONeeiiiiiiiiiiee e e e e e e e e e e 29

Chapter 2 - Using the Form C SwitCh ... e 31
USING ThiS Chapter ..o e e e e eaeeaeas 31
Form C Switch COMMENGSoeiiiiiiiiiiiiiiiee et 31
Power-on and Reset CONAItIONScoiiiiiiiiiiiiiee e 32
Module 1dentifiCationcoiiiiiii s 32

Example: Module Identification (BASIC)ooooviiiiiiiiiiiieeee e 32
Example: Module Identification (TURBO C)coooiiiiiiiiiiiiieee e 33
SWitching ChanNEISccooiiiie e 34
Example: Opening/Closing Channels (BASIC)cccoviiiiiiiieieececcieeeee e 34
Example: Voltage Switching (BASIC)uviiiiiiiiiiiiieeeeeeeee e 34
Example: Controlling RF Switches/Step Attenuators (BASIC)cccocvvvveeeeeennn. 35
Example: Digital Output Configuration (BASIC)ccccveiveiieeiiiiiiiieie e 37
Example: Matrix Switching (BASIC)ovviiiiieiei i 37

ScanNiNng ChaNNEISoooiii i e e e e e e 39

Example: Scanning Using Trig In and Trig Out Ports (BASIC)ccccvvveveeeen.n. 39
Example: Scanning Using the TTL Trigger Bus (BASIC)cooooviiviiiieeeeeeenn. 40
Querying the FOrm C SWItCNcciiiiiiieiie e 42
Example: Querying Channel Closures (BASIC)cccoveviiiieiiiieeeeee e 42
Using the Scan Complete Bit..........oovviiiiiiiiiiie e 42
Example: Using the Scan Complete Bit (BASIC)cccvvvievvieiiiiiiiiieeeeeeeee 43
Saving and Recalling Statesuveiiiiiiiiiiiiicee e 44
Example: Saving and Recalling State (BASIC)ccccvvviiiieiieiiiiiiieeeeee e 44
Detecting Error CoNitioNSciiiiiiiie it a e 45
Example: Detecting Error Conditions (BASIC)cccovvviiiiiiieiiiei e 45
Example: Detecting Error Conditions (Turbo C)ccccccevevieiiiiiiiiiieieeeeeeen 45
Synchronizing the FOrm C SWitChoooiiiiiiii e 46
Example: Synchronizing the Form C Switch (BASIC)oovvvveiiiiiiiiiiiieeeeee, 46
Chapter 3 - E1463A Command Reference ... 47
ABORLE ...ttt e e e et e e e e — e e e e e abaraeeeatraaaeeeareeeaeeans 50
ARM e e e e e — e e e e b — e e e e e aataeaeaeaannraeeeeaanraeaeeaas 51
ARMICOUNTL ettt e et e e e e et e e e e e e e e s snnaeeaesnnsnneees 51
ARM:COUNL? et s et e et e e s et e e e e e e e e s snsaeeeesnnsnneees 52
1T o = SRR 53
DISPIay:MONItOr:CARDooiiiiiiiiiie it 53
DISPIay:MONItOr[:STATE] ..oeeeeeiiiieee et eaae e e 54

1NN =) (= TSSO PPPPRPPPPI 55
INITIate:CONTINUOUS .ooiieeiii ettt e e e e e e e e e e e e e e e e ennes 55
INITIate:CONTINUOUS? .ot e e e e e e ee e e e e e e e e e e nnes 56
INITIate[:IMMEIAte]cooeiiiiiiiiii e e e e e 56

L@ 10 I U SO STPRPP 57
OUTPULEXTerNal[:STATE] .oeeiieieeeeie ittt e e e e e 57
OUTPULEXTernall:STATE]? oot e e e e 58
OUTPULLSTATE] oottt ettt ettt ettt e e e et ee e e e e st e e e e e snnreeeeeeenees 58
OUTPULLSTATE]? ettt ettt e e e e saee e e e e enbee e e e e snnreee e e e enees 59
OUTPULTTLTIGN[:STATE] eeeeiieieeeeee ettt e e e e eaee s 59
OUT PUL T TLTrgN S TATE] 7 ettt e e e e eae s 60
RSO 16 I 1= SRR 61
[ROUTEIICLOSEeeieiiiei ettt ettt a et e e s e st e e e e e nnnbae e e e e nnes 61
[ROUTEIICLOSE? ..eeeeiiiei ittt ettt ettt a et ee e s et e e e e e nsbee e e e e nnes 62
[ROUTEIOPEN ...ttt ettt e e e e e et e e e e ensree e e e nees 62
[ROUTEIJOPENT? ..ottt ettt e et e e e e et re e e e e ennree e e e enees 63
[ROUTEIISCAN .ttt e et e e et e e e s et ee e e e e enssreaeeennnees 64
RS LU SRS 65
STATus:OPERation:CONDItION? ...t 67
STATUs:OPERAtiON:ENABIE ..o 67
STATuUs:OPERatiON:ENABIE? ... 67
STATUs:OPERatON[:EVENL]? ..o e 68
STATUSIPRESEL ...t eeae s 68

S S 1 =Y 04 TSSOSO 69
SYSTEM:CDESCHPLONT ...t eeee s 69
SYSTEMICPON ..ottt e et e e e s st e e e e s snbe e e e e s abeeeeeeanes 69

SY ST EM T Y P 7 e 70

SY STEMIERROI? ..t e e e e et e e e e e e e e eaaaas 70

IR 1= PP URPPPRRRNt 72

TRIGGEr[:IMMEIAtE] ...t e e e 72
TRIGGENSOURCE ...ttt e e e e e e e e s aee s 73
TRIGGENSOURCE? ...ttt e e e e e e e e s aee s 74
Appendix A - Form C Switch Specificationsccccovcmrmriii e 77
Appendix B - Register-Based Programmingc.cceeeerummemnsssnnnnsnnnnnnssssssssssssssssssssnes 79
ADOUL THiS APPENUIX ...ttt s e as e e e e e e e e e e e e aeeeeeeaeeees 79
Register Programming vs. SCPI Programming..........cccoccuvviiiiiiieee e cesciiieeee e 79
Addressing the REGISIEISuuuiiii e e e 79
The Base AQAIESSoeiiiiiiiiiiee ettt e e 80
ReGISTEr OffSEL ... e 81
RegisSter DeSCrIPLIONSoviviiiiiieiece et e e e e e e e e ea e 82
Reading and Writing to the Registers ... 82
Manufacturer Identification Register ... 82

Device TYpe REGISIEr ..o 82
Status/Control REGISIEreiiiiii e 82

Relay Control REGISEIrcoiiiiiiiie e 84
Programming EXamMPIES..........uuiiiiiiiiiiiieiiee s 85
Example: Reading the Registers (BASIC)ooviiiiiiiiie 85
Example: Reading the Registers (C/HP-UX) ... 86
Example: Making Measurements (BASIC) ..., 87
Example: Making Measurements (C/HP-UX)ocoooiiiiiiiiiiiiee e, 88
Example: Scanning Channels (BASIC) ...t 90
Example: Scanning Channels (C/HP-UX)cccooiiiiiiiiiie e 91
Appendix C - E1463A Error MeSSagesccccocerrmrirriiiiiiiissssssnnesesssssssssssssssmsmmssssssessas 93
o] g Y/ o 1= SO PRSP PRPPP 93
EFTOr IMESSAUES ... ettt ettt 94

Notes:

AGILENT TECHNOLOGIES WARRANTY STATEMENT
AGILENT PRODUCT: E1463A 32-Channel, 5 Amp Form C Switch Module DURATION OF WARRANTY: 3 years

1. Agilent Technologies warrants Agilent hardware, accessories and supplies against defects in materials and workmanship for the period
specified above. If Agilent receives notice of such defects during the warranty period, Agilent will, at its option, either repair or replace
products which prove to be defective. Replacement products may be either new or like-new.

2. Agilent warrants that Agilent software will not fail to execute its programming instructions, for the period specified above, due to
defects in material and workmanship when properly installed and used. If Agilent receives notice of such defects during the warranty
period, Agilent will replace software media which does not execute its programming instructions due to such defects.

3. Agilent does not warrant that the operation of Agilent products will be interrupted or error free. If Agilent is unable, within a reasonable
time, to repair or replace any product to a condition as warranted, customer will be entitled to a refund of the purchase price upon prompt
return of the product.

4. Agilent products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.

5. The warranty period begins on the date of delivery or on the date of installation if installed by Agilent. If customer schedules or delays
Agilent installation more than 30 days after delivery, warranty begins on the 31st day from delivery.

6. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts
or supplies not supplied by Agilent, (c) unauthorized modification or misuse, (d) operation outside of the published environmental
specifications for the product, or (e) improper site preparation or maintenance.

7. TO THE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER
WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED AND AGILENT
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY
QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE.

8. Agilent will be liable for damage to tangible property per incident up to the greater of $300,000 or the actual amount paid for the product
that is the subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court
of competent jurisdiction to have been directly caused by a defective Agilent product.

9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE CUSTOMER’S
SOLE AND EXLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, INNO EVENT WILL AGILENT OR ITS SUPPLIERS BE
LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR
DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.

FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS
STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE
IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial
computer software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun
1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such
Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product
involved.

%, Agilent Technologies

E1463A 32-Channel, 5 Amp Form C Switch Module User’s Manual
Edition 4
Copyright © 1991, 1994, 1996, 2001 Agilent Technologies, Inc. All rights reserved.

Documentation History

All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edition
number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to
correct or add additional information to the current Edition of the manual. Whenever a new Edition is created, it will contain all of the
Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this documentation history page.

Edition 1 ... July, 1991
Edition 2 January, 1994
Edition3 January, 1996
Edition4 February, 2001
Safety Symbols
Instruction manual symbol affixed to .
product. Indicates that the user must refer to /\/ Alternating current (AC)
the manual for specific WARNING or
CAUTION information to avoid personal —_— Di DC
injury or damage to the product. - - irect current (DC).
i i : Warning. Risk of electrical shock.
Indicates the field wiring terminal that must

be connected to earth ground before
operating the equipment — protects against

Calls attention to a procedure, practice, or
electrical shock in case of fault.

condition that could cause bodily injury or
death.

WARNING

Calls attention to a procedure, practice, or

I Frame or chassis ground terminal—typically CAUTION . dition that could possibly cause damage to
or connects to the equipment's metal frame. equipment or permanent loss of data.

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to
comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and
intended use of the product. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT
use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of
covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the
equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you
are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been
impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until
safe operation can be verified by service-trained personnel. If necessary, return the product to Agilent for service and repair to ensure that
safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and
resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts
or perform any unauthorized modification to the product. Return the product to Agilent for service and repair to ensure that safety features
are maintained.

Agilent Technologies DECLARATION OF CONFORMITY

According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014

Manufacturer’s Name: Agilent Technologies, Inc.
Manufacturer’s Address: Basic, Emerging and Systems Technologies Product Generation Unit

815 141 Street S.W.
Loveland, CO 80537 USA

Declares, that the product

Product Name: 32-Channel, 5 Amp Form C Switch Module
Model Number: E1463A
Product Options: This declaration includes all options of the above product(s).

Conforms with the following European Directives:

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC
and carries the CE Marking accordingly.

Conforms with the following product standards:

EMC Standard Limit
IEC 61326-1:1997 + A1:1998 / EN 61326-1:1997 + A1:1998
CISPR 11:1997 + A1:1997 / EN 55011-1991 Group 1, Class A"l
IEC 61000-4-2:1995+A1998 / EN 61000-4-2:1995 4KV CD, 8 kV AD
IEC 61000-4-3:1995 / EN 61000-4-3:1995 3 V/m, 80-1000 MHz
IEC 61000-4-4:1995 / EN 61000-4-4:1995 0.5 kV signal lines, 1 kV power lines
IEC 61000-4-5:1995 / EN 61000-4-5:1995 0.5 kV line-line, 1 kV line-ground
IEC 61000-4-6:1996 / EN 61000-4-6:1996 3V, 0.15-80 MHz
IEC 61000-4-11:1994 / EN 61000-4-11:1994 1 cycle, 100%

Canada: ICES-001:1998
Australia/New Zealand: AS/NZS 2064.1

Safety IEC 61010-1:1990+A1:1992+A2:1995/EN 61010-1:1993+A2:1995
Canada: CSA C22.2 No. 1010.1:1992
UL 3111-1

Supplemental Information:

[1] The product was tested in a typical configuration with Agilent Technologies test systems.

ol

September 5, 2000

Date Name

Quality Manager

Title

For further information, please contact your local Agilent Technologies sales office, agent or distributor.
Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Strape 130, D 71034 Béblingen, Germany

Revision: A.03 Issue Date: 09/05/00

Notes:

10

Chapter 1
Getting Started

Using This Chapter

This chapter gives guidelines to get started using the E1463A 32-Channel,
5 Amp Form C Switch module (Form C switch), including:

® Form C Switch Description. 11
® Configuring the Form C Switch. 14
® Configuring a Terminal Module. 18
® Protecting Relays and Circuits 23
® Programming the Form C Switch 27

Form C Switch Description

Basic Operation

The E1463A 32-Channel, 5 Amp, Form C Switch module (Form C switch)
is defined as a VXlbus instrument. VXIbus plug-in modules installed in a
mainframe or used with a command module are treated as independent
instruments each having a unique secondary address.

Each instrument is also assigned a dedicated error queue, input and output
buffers, status registers and, if applicable, dedicated mainframe/command
module memory space for readings or data. An instrument may be
composed of a single plug-in module (such as a counter) or multiple plug-in
modules (for a switchbox or scanning multimeter instrument).

The Form C switch is a C-Size VXIbus and VMEbus register-based product
that can be used for switching, scanning, and control. The switch can
operate in a C-Size VXIbus or VMEbus mainframe. The switch has 32
channels of Form C relays. Each channel includes a relay with common (C),
normally open (NO), and normally closed (NC) contacts.

For the Form C switch, switching consists of opening or closing a channel
relay to provide alternate connections to user devices. Scanning consists
of closing a set of relays, one at a time.

As shown in Figure 1-1, the Form C switch module consists of 32 channels
(channels 00 through 31). Each channel uses a nonlatching relay. Varistors
(MQOVs) can be added for relay protection and resistors or fuses can be
added for circuit protection. See "Adding Relay and Circuit Protection” for
more information on protecting relays.

External pull-up resistors can also be added for digital output applications.
See "Digital Output Configuration" for additional information about these
applications.

Chapter 1

Getting Started 11

|_ E1463A MODULE TERMINAL MODULE _I \
I

I 1
! NO NC . !
| Channel 0 r / CONO ‘ |
1 ——- 1
1 . ; | >—& CONO 1
I I
coc e oo |
| rot—ot—{o o —@ coc
1 - - 1
] CONC i
o >—@ CONC
| ° I |
1 | 1
1 | 1
| : |
1 [|
! NO NC ! !
| Pads |
Channel 15 C15ND for MOVS |
1 ——]
1 . -0 >—& C15NO 1
| c1sc o Jumper |
oo fo o) >—@ C15C
1 o -——= 1
! c15C i
o >—@ C15NC
| Pads | |
1 for MOVS 1
1 | 1
| | |
1 ‘ 1
! NO NC : !
| Channel 16 r / C16NO | |
1 ——— 1
. ‘ ol >—@ C16NO I
I I
c16C r—m pm=s |
| tod—F53—fo o >—@ C16C
1 | I - 1
! c16C i
| o >—@ C16NC |
. |
1 1
1 | 1
| ’ | |
1 e ‘ 1
! NO NC | !
! Channel 31 r / C31NO | !
) ! .r_ﬁ. >—@ C31NO |
I I
c31c —m oo |
| o o3 [o/\oj —@ C31C
1 - | | —_— 1
] c31c I
| o >—@ C31NC J

Figure 1-1. Form C Switch Simplified Schematic

Each channel is switched by opening or closing the appropriate channel
relay. Since the relays are nonlatching, the relays are all open during
power-up or power-down.

When a reset occurs, all channel commons (C) are connected to the
corresponding normally closed (NC) contacts. When a channel is closed,
the common contact (C) is connected to the normally open contact (NO).
User inputs and outputs to each channel are via the NO, NC, and C terminal
connectors on the terminal module.

12 Getting Started Chapter 1

Typical

Configurations

General Purpose Relay

Configuration

Digital Output
Configuration

The Form C switch accepts user inputs up to 125 Vdc or 250 Vrms.
Maximum rated power capacity (external load) is 150 Wdc or 1250 VA per
channel. Per module, you can switch 1500 Wdc or 12500 VA.

As noted, the switch may be configured for general purpose
switching/scanning or digital output applications. For general purpose
switching or scanning, no additional configuration is required. To configure
the switch for digital output applications, install external pull-up resistors as
required.

Multiple Form C switch modules can be configured as a switchbox
instrument. When using a switchbox instrument, multiple Form C switch
modules within the switchbox instrument can be addressed using a single
interface address. This configuration, however, requires the use of
Standard Commands for Programmable Instruments (SCPI).

As factory-configured, the Form C switch module is set for general purpose
relay configuration. For this configuration, you can switch channels by
opening or closing channel relays or you can scan a set of channels.

Figure 1-2 shows a typical general purpose relay configuration for channel
00. When the relay is open (NC terminal is connected to the C terminal), load
1 is connected. When the relay is closed (NO terminal is connected to the C
terminal), load 2 is connected.

4 N

TERMINAL
Channel MODULE +V
00 | |

NO CONO

C @ 2

CONC
oNC o o 1

cocC
1 %, 1

¢

Relay Load

Open 1

\ Closed 2 /

Figure 1-2. General Purpose Relay Configuration

By installing external pull-up resistors, the Form C switch can be configured
as a digital output device. Figure 1-3 shows channel 00 configured for digital
output operation. When the channel 00 relay is open (NC connected to C),
point 1 is at +V. When the channel 00 relay is closed (NO connected to C),
point 1 is at OV.

Chapter 1

Getting Started 13

E1463A TERMINAL
MODULE MODULE y
+

1 [1
1 Channel [!

| " | |

CONO

1 C ONO L T \d @
1 [1

| —O- NC i i CONC i R @
1 [1 :T7

1 1o coc |

Open ov
Closed ov

N /

Figure 1-3. Digital Output Configuration

Relay @ @
+V
ov

Configuring the Form C Switch

Warnings and
Cautions

WARNING

CAUTION

This section gives guidelines to configure the Form C switch, including the
following topics. See "Configuring a Terminal Module" for guidelines to
configure the terminal modules. Section topics include:

® Warnings and Cautions

® Setting the Logical Address Switch

® Setting the Interrupt Priority

® Installing the Form C Switch in a Mainframe

SHOCK HAZARD. Only qualified, service-trained personnel who are
aware of the hazards involved should install, configure, or remove the
Form C switch module. Use only wire rated for the highest input
voltage and remove all power sources from the mainframe and
installed modules before installing or removing a module.

MAXIMUM VOLTAGE/CURRENT. Maximum allowable voltage per channel
for the Form C switch is 125 Vdc or 250 Vrms. Maximum current per
channel is 5 Adc or ac rms (non-inductive). Maximum power of an external
load is 150 W or 1250 VA per channel or 1500 W or 12500 VA per module.
Exceeding any limit may damage the Form C switch.

14 Getting Started

Chapter 1

CAUTION STATIC ELECTRICITY. Static electricity is a major cause of component
failure. To prevent damage to the electrical components in the Form C
switch, observe anti-static techniques whenever removing a module from
the mainframe or whenever working on a module. The Form C switch is
susceptible to static discharges. Do not install the Form C switch without
its metal shield attached.

Setting the Logical The logical address switch (LADDR) factory setting is 120. Valid addresses
Address Switch 2 from 1 to 255. The Form C switch can be configured as a single
instrument or as a switchbox. See Figure 1-4 for switch position information.

NOTE The address switch selected value must be a multiple of 8 if the module is
the first module in a switchbox used with a VXlbus command module and
is being instructed by SCPI commands.

\

50

/:CE

Logical Address = 120 Logical Address
Switch Location

LaooR

-

8+16+32+64=120

©)

CLOSED = Switch Set To 1 (ON)
OPEN = Switch Set To 0 (OFF)

/
-
N

Figure 1-4. Setting the Logical Address Switch

Chapter 1 Getting Started 15

Setting the Interrupt

Priority

NOTE

The Form C switch generates an interrupt after a channel has been closed.
These interrupts are sent to, and acknowledgments are received from, the
command module (E1406, for example) via the VXIbus backplane interrupt
lines.

For most applications where the Form C switch is installed in a C-Size
mainframe, the interrupt priority jumper does not have to be moved. This is
because the VXIbus interrupt lines have the same priority and interrupt
priority is established by installing modules in slots numerically closest to the
command module. Thus, slot 1 has a higher priority than slot 2, slot 2 has a
higher priority than slot 3, etc.

See Figure 1-5 to change the interrupt priority. You can select eight different
interrupt priority levels. Level 1 is the lowest priority and Level 7 is the
highest priority. Level X disables the interrupt. The Form C switch factory
setting is Level 1. To change the interrupt priority, remove the 4-pin jumper
from the old priority location and reinstall in the new priority location. If the
4-pin jumper is not used, the two jumper locations must have the same
interrupt priority level selected.

The interrupt priority jumper MUST be installed in position 1 when using the
E1406 Command Module. Level X interrupt priority should not be used
under normal operating conditions. Changing the priority level jumper is not
recommended. Do not change unless specifically instructed to do so.

B

T

N

Logical Address
Switch Location
Using 2-Pin Using 4-Pin J
Jumper Jumper e
IRQ IRQ D
s | 7 smes| 7
B R BB 6 ¥ E B 6
B R BB 5 B EE B 5
B R BB 4 B EE B 4
e e | 3 wmEm| 3
se | 2 smawr| 2 Interrupt
1 1 Priority
smea| X smaea| X Location

Figure 1-5. Setting the Interrupt Priority

16 Getting Started

Chapter 1

i e may be installed in any slot, except slot 0, in a C-size us
Installing the Form The E1463A may b lled | lot 0, in a C-size VXIb
C Switch in a mainframe. See Figure 1-6 to install the Form C switch in a mainframe.

Mainframe

@ Set the extraction levers out.

Slide the E1463A into any slot
(except slot 0) until the backplane

HP ET463A
connectors touch.

Module

PN Y

Extraction
Levers

®
®

@; RN
@

Seat the E1463A into
the mainframe by pushing
in the extraction levers.

Tighten the top and bottom screws
to secure the module to the
mainframe.

AT

Q)

NOTE: The extraction levers will not

seat the backplane connectors on older
VXIbus mainframes. You must manually
seat the connectors by pushing in the
module until the module's front panel is
flush with the front of the mainframe. The
extraction levers may be used to guide or
remove the Form C switch.

MUY @,

Q

To remove the module from the mainframe,
reverse the procedure.

o /

Figure 1-6. Installing the Form C Switch in a VXlbus Mainframe

Chapter 1 Getting Started 17

Configuring a Terminal Module

Standard Terminal
Module Description

The E1463A 32-Channel, 5 Amp, Form C Switch consists of a relay switch
card and a screw type standard terminal module. In addition, a solder eye
terminal module (Option A3G) is available. User inputs to the Form C switch
are to the normally open (NO), normally closed (NC), and common (C)
terminal connectors on the terminal module. This section shows how to
configure the terminal modules, including:

® Standard Terminal Module Description

® Terminal Module Option A3G Description

® Connecting User Inputs

® Wiring a Terminal Module

® Attaching a Terminal Module to the Form C Switch

Figure 1-7 shows the standard screw type terminal module connectors and
associated channel numbers.

-

.

~

88

)

Terminal Module
Option A3G
Description

Figure 1-7. Standard Screw-type Terminal Module

Option A3G provides a plastic terminal module housing with solder eye
connectors (see Figure 1-8) that allows you to solder wires onto connectors
which are then inserted directly into the mating connector of the Form C
switch. See Figure 1-9 for pin-outs.

-

Figure 1-8. Option A3G Terminal Module

18 Getting Started

Chapter 1

Connecting User

Inputs

Figure 1-9 shows the front panel of the E1463A and the Form C switch
connector pin-out that mates to the terminal module. Actual user inputs

are connected to the applicable terminal module.

-

32-CH 5 AMP
FORM—C SWITCH

Pin

Pin _
A2

Pin _
A32

Pin

a

a

o

o

A32 — © 00NO

01NO
02NO
03NO
04NO
05NO
06NO
07NO
08NO
09NO
10NO
11NO
12NO
13NO
14NO

o 15NO

o

a

o

16NO
17NO
18NO
19NO
20NO
21NO
22NO
23NO
24NO
25NO
26NO
27NO
28NO
29NO
30NO

A2 0 31NO

Pin _
C32

Pin _
C2

Pin _
C32

Pin _
C2

ooC
01C
02C
03C
04C
05C
06C
07C
08C
09C
10C
11C
12C
13C
14C

o 15C

=]

16C
17C
18C
19C
20C
21C
22C
23C
24C
25C
26C
27C
28C
29C
30C
31C

\

paD = o 0ONC
5 01NC
5 02NC
5 03NC
5 04NC
5 05NC
5 06NC
o 07NC

o 08NC

o

09NC
o 10NC

o

11NC
o 12NC
o 13NC

o

14NC

B — 5 15NC

Pin _
E32

o

16NC
o 17NC
o 18NC
o 19NC
o 20NC
o 21NC
o 22NC
o 23NC
o 24NC
o 25NC
o 26NC
o 27NC
o 28NC
o 20NC
o 30NC

P — 0 3INC

Figure 1-9. Form C Switch Pin-outs

Chapter 1

Getting Started 19

Wiring a Terminal Figures 1-10 and 1-11 show how to connect field wiring to the terminal
Module module. When making wiring connections, be sure the wires make good
connections on screw terminals. Maximum terminal wire size is No. 16
AWG. When wiring all channels, a smaller gauge wire (No. 20 - 22 AWG)
is recommended. Wire ends should be stripped 6 mm (0.25 inch) and tinned
to prevent single strands from shorting to adjacent terminals.

@ Remove Clear Cover @ Remove and Retain Wiring Exit Panel

A. Release Screws

Remove 1 of the 3
B. Press Tab Forward I wire exit panels
and Release

@ Make Connections
Screw Type

Use wire
Size 16-26
AWG

Insert wire into terminal.
Tighten screw.

Figure 1-10. Wiring a Terminal Module (continued on next page)

20 Getting Started Chapter 1

Cut required
holes in panels
for wire exit

@ Replace Wiring Exit Panel

N

W]

Keep wiring exit panel
hole as small as

@ Replace Clear Cover
A. Hook in the top cover tabs

B. Press down and

onto the fixture
7 Q tighten screws

@ Install the Terminal
Module

nnnn\nnn\)/

ERXXRRRRRRRRRNK)

E1463A
Module

Extraction

Levers %%

nnnnnnnx}/ =

ANV

Push in the Extraction Levers to Lock the
Terminal Module onto the E1463A

6
@
™ .

i

Figure 1-11. Wiring a Terminal Module

Chapter 1

Getting Started 21

Attaching a Figure 1-12 gives guidelines to attach a terminal module to the Form C

Terminal Module to SWich
the Form C Switch

Extend the extraction levers on the
terminal module.

Extraction Lever —__

/

Use small screwdriver /
to release the two L
extraction levers

NN %

E1463A

iﬂ Module
Extraction Lever

@ Align the terminal module connectors
to the E1463A module connectors.

Apply gentle pressure to attach
the terminal module to the

E1463A module.
@ Push in the extraction levers 1
to lock the terminal module
onto the E1463A module.
Extraction

Levers

¥

To remove the terminal module from the E1463A,
use a small screwdriver to release the two extraction
levers and push both levers out simultaneously
to free it from the Form C switch module.

Figure 1-12. Attaching a Terminal Module to the Form C Switch

22 Getting Started Chapter 1

Protecting Relays and Circuits

NOTE

Relay Life Factors

Loading and Switching
Frequency

CAUTION

End-of-Life Detection

This section gives guidelines to protect relays and circuits in the Form C
switch, including:

® Relay Life Factors

* Extending Relay Life

® Adding Relay and Circuit Protection

® Maximum Allowable Module Switch Current

Relays that wear out normally or fail due to misuse should not be
considered defective and are not covered by the product's warranty.

Relays have a shorter life span than other electronic parts, such as ICs.
Because of their mechanical nature, relays usually have about 10 million
operations (at 30 operations per second) which is not quite 100 hours.
Therefore, to get the full life out of a relay in a switching module, you must
protect the relay.

Electromechanical relays are subject to normal wear-out. Relay life depends
on several factors. The effects of loading and switching frequency are:

Relay Load. In general, higher power switching reduces relay life. In
addition, capacitive/inductive loads and high inrush currents (for example,
turning on a lamp or starting a motor) reduces relay life.

Exceeding specified maximum inputs can cause catastrophic failure.

Switching Frequency. Relay contacts heat up when switched. As the
switching frequency increases, the contacts have less time to dissipate heat.
The resulting increase in contact temperature also reduces relay life.

A preventive maintenance routine can prevent problems caused by
unexpected relay failure. The end of the life of the relay can be determined
by using one or more of the following three methods. The best method (or
combination of methods), as well as the failure criteria, depends on the
application in which the relay is used.

Contact Resistance. As the relay begins to wear out, its contact resistance
increases. When the resistance exceeds a predetermined value, the relay
should be replaced.

Stability of Contact Resistance. The stability of the contact resistance
decreases with age. Using this method, the contact resistance is measured
several (5-10) times and the variance of the measurements is determined.
An increase in the variance indicates deteriorating performance.

Number of Operations. Relays can be replaced after a predetermined
number of contact closures. However, this method requires knowledge of
the applied load and life specifications for the applied load.

Chapter 1

Getting Started 23

Replacement Strategy The replacement strategy depends on the application. If some relays are
used more often, or at a higher load, than the others, the relays can be
individually replaced as needed. If all the relays see similar loads and
switching frequencies, the entire circuit board can be replaced when the end
of relay life approaches. The sensitivity of the application should be weighed
against the cost of replacing relays with some useful life remaining.

Extending Relay To help ensure full life for the relays, you should consider the following
Life items.

Be aware of non-resistive loads. \When switching inductive loads, high
voltages (thousands of volts) are produced across the relay contacts. This
causes arcing and transfer of material between contacts. Oxides and
carbides from components of the atmosphere coat the contacts and cause
high contact resistance.

The transfer of material creates hills and valleys that lock together to "weld"
contacts. Motor loads, for example, produce large inrush currents that can
be 5 to 10 times greater than the steady state current. Table 1-1 summarizes
inrush current magnitudes for different types of loads.

Table 1-1. Inrush Currents

Type of Inrush Current Type of Inrush Current
Load Times Load Times
Steady State Steady State
Resistive 1 Incandescent Lamp | 10-15
Capacitive 20-40 Mercury Lamp 3
Solenoid 10-20 Sodium VaporLamp | 1-3
Motor 5-10 Transformer 5-15

Be aware of heavy current applications. \When arelay is used in heavy current
applications, the thin layer of gold plating on the contact may be destroyed.
This will not affect the heavy current application. However, if you go back to
a low current application, a high contact resistance may be present and the
relay cannot be used for low current applications.

Use protective circuits with relay connections. The relay manufacturer
(Aromat) recommends some protective circuits that can be used with your
relay connections. See the Aromat Technical Data Book (AGC-C0064-A-1)
for additional information. Contact Aromat at (408) 433-0466 for more
information.

Do not use capacitors. Capacitors are not to be placed across the load or
relay contacts. Capacitors may suppress arcs, but the energy stored in the
capacitors will flow through the relay contacts, welding them.

24 Getting Started Chapter 1

Adding Relay and
Circuit Protection

The Form C switch has space for adding relay and circuit protection. Relay
protection can be added by placing a protective device across the specified
pads. This is done by adding metal oxide varistors (MOVs) between the
common (C) and normally open (NO) or normally closed (NC) terminals.
As the voltage goes up, the varistor draws current to protect the relay.

Circuit protection can be added by placing a protective device in series with
the common lead. This is done by adding a resistor between the common
(C) terminal and your circuit. When installing circuit protection, a jumper
must be removed first.

To install these protective devices it is necessary to remove the sheet metal
covers from the module. The locations for installing the devices are labeled
as shown in Table 1-2, where xx = the channel number. Do not install a
capacitor in any of these locations. Figure 1-13 shows locations where these
protective devices can be added.

Table 1-2. Protective Devices Board Locations

Relay Protection Circuit Protection
VxxO Varistor location across common (C) and normally
open (NO).
VxxC Varistor location across common (C) and normally
closed (NC).

Circuit Protection

JMxx Resistor or fuse location in series with common (C).

4 N

C NO NC

xx = Channel Number

\ Relay /

Figure 1-13. Adding Relay and Circuit Protection

Chapter 1

Getting Started 25

Maximum Allowable The Form C switch has an individual channel current specification of 5A.
Module Switch However, if you apply 5A to all the channels with a relay contact resistance

of .25 Ohms, the power dissipation is 200 W. Since, for example, the
Current E1401B mainframe can only provide cooling for 55W per slot (to keep the
temperature rise to 10°C), this cannot be allowed to happen.

A reasonable maximum current for the entire mainframe is 50A. That is,
10 channels each carrying 5A or some combination of channels and
currents that total 50A. This will produce about 67.5 W of internal dissipation,
leading to an approximate 15°C temperature rise.

Figure 1-14 shows a typical way to derate the channels, in terms of current
throughout the channels, to keep internal power dissipation under 45 W and
67.5 W or 10°C and 15°C temperature rise, respectively.

Current Per Switch-AMPS

~

E1401B Mainframe and
.25() Relay Contact Resistance

o

[] T 1T 11 1T 1T " T T T T T T T T T T T T T
0123 456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
No. of Switches Carrying Current

0 =45 Watt MF Diss
+ =67.5 Watt MF Diss

Figure 1-14. Typical Form C Switch Allowable Switch Current

26 Getting Started

Chapter 1

Programming the Form C Switch

Using SCPI
Commands

NOTE

Addressing the
Form C Switch

This section gives guidelines to program the Form C switch, including:

® Using SCPI Commands
® Addressing the Form C Switch
® |nitial Operation

There are several ways you can program the Form C switch. One way is
to write directly to the registers. This method can provide better throughput
speed. However, it requires more knowledge of the Form C switch design.

Another way to program the Form C switch is to use an E1406 Command
Module and SCPI commands. With SCPI commands, the command module
parses the commands and writes to the appropriate Form C switch register.

You can use different controllers and different programming languages.
However, most examples in this manual use SCPI commands and an
HP 9000 Series 200/300 (or equivalent) computer running BASIC or a
PC with an 82350A (or equivalent) Interface Card (with command library)
running Borland™ Turbo C.

Most examples in this manual use SCPI commands. See Appendix B for
information on writing directly to the registers.

To address specific channels (relays) within a Form C switch, you must
specify the SCPI command and switch channel list. Table 1-3 lists the most
commonly used commands.

Table 1-3. Typical SCPI Commands

SCPI Command Description

CLOSe <channel_list>| Connects the normally open (NO) terminal to the
common (C) terminal for the channels specified.

OPEN <channel_list> | Connects the normally closed (NC) terminal to the
common (C) terminal for the channels specified.

SCAN <channel_list> | Closes the set of Form C relays, one at a time.

Relays (channels) within the Form C switch are addressed using the

channel_list statement. The channel_listis a combination of the switch card
number and the channel numbers. The channel_list takes the form @ccnn
where cc = switch card number (01-99) and nn = channel number (00-31).

Chapter 1

Getting Started 27

Card Numbers

The card number (cc of the channel_list) identifies the module within a
switchbox. The card number assigned depends on the switch configuration
used. Leading zeroes can be ignored for the card number.

In a single-module switchbox configuration, the card number is always 01.
In a multiple-module switchbox configuration, modules are set to successive
logical addresses.

The module with the lowest logical address is always card number 01. The
module with the next successive logical address is card number 02, etc.
Figure 1-15 illustrates card numbers and logical addresses of a typical
multiple-module switchbox configuration.

-

Card Number 01 \

R e &
(o e i FEERe s o Switch Module
1 1
ss [T 10T 1] Logical Address = 120
o7 654321 oo Secondary Address = 15
Command |
Module ~ Lo
Card Number 02
i R 8Cnan
SO I O]) Switch Module
o | | — T*= o o Logical Address = 121
76543210
0 Card Number 03
0 Lsno
O M~ O N
} o } } }] 1 Switch Module
_ Logical Address = 122
‘ 55732 70)
o I

N

|

Note: Physical placement of the Module in the Logical Address
order is not required, but is recommended. /

Figure 1-15.

Channel Addresses

Typical Card Numbers in a Multiple-module Switchbox

The channel address (nn of the channel list) determines which relay on the
selected card will be addressed. Form C switch channel numbers are 00
through 31. The channels can be addressed using channel numbers or
channel ranges:

® single channels (@ccnn);

® multiple channels (@ccnn,ccnn,...);

® sequential channels (@ccnn:ccnn);

® groups of sequential channels (@ccnn:ccnn,ccnn:ccnn);
® or any combination of the above.

Use a comma (,) to form a channel list or a colon (:) to form a channel range.
Only valid channels can be accessed in a channel list or channel range.
Also, the channel range must be from a lower channel number to a higher
channel number. For example, CLOS(@100:215) is acceptable, but
CLOS(@215:100) generates an error.

28 Getting Started

Chapter 1

Initial Operation

Example: Closing a
Channel (BASIC)

Example: Closing a
Channel (TURBO C)

Two example programs follow to help get you started using the Form C
switch. The first example assumes an HP 9000 Series 200/300 controller
running BASIC and a GPIB interface. The second example assumes a PC
running Borland Turbo C and an 82350A (or equivalent) Interface Card (with
command library)

This program closes channel 02 of a Form C switch at logical address 120
(secondary address = 120/8 = 15) and queries the channel closure state.
The result is returned to the computer and displayed (1 = channel closed,
0 = channel open). See Chapter 3 for information on the SCPI commands.

10 OUTPUT 70915;"*RST" ! Reset the module

20 OUTPUT 70915;"CLOS(@102)" ! Close channel 02

30 OUTPUT 70915;"CLOS?(@102)" ! Query channel 02 state
40 ENTER 70915;Value ! Enter result into Value
50 PRINT Value ! Display result

60 END

This program closes channel 02 of a Form C switch at logical address 120
(secondary address = 120/8 = 15) and queries the channel closure state.
The result is returned to the computer and displayed (1 = channel closed,
0 = channel open). See Chapter 3 for information on the SCPI commands.

#include <stdio.h>

#include <chpib.h> /*Include file for GPIB*/
#define ISC 7L

#define FORMC 70915L /*Form C default address*/
#define TASK1 "*RST" /*Command for a reset*/

#define TASK2 "CLOSE (@102)" /*Command to close channel 02*/
#define TASK3 "CLOS? (@102)" /*Command to query channel 02*/

main()

{
char into[257];

int length = 256;
/*Output commands to Form C switch*/

error_handler (IOTIMEOUT (7L,5.0), "TIMEOUT");

error_handler (IOOUTPUTS (FORMC, TASK1, 4), "OUTPUT command");
error_handler (IOOUTPUTS (FORMC, TASK2, 12), "OUTPUT command");
error_handler (IOOUTPUTS (FORMC, TASK3, 12), "OUTPUT command");

/*Enter from Form C switch*/

error_handler (IOENTERS (FORMC, into, &length), "ENTER command");
printf("Now let's see if the switch is closed: %s",into);
return;

}

int error_handler (int error, char *routine)

{

Chapter 1

Getting Started 29

char ch;

if (error != NOERR)

{
printf ("\n Error %d %s \n", error, errstr(error));
printf (" in call to function %s \n\n", routine);
printf ("Press 'Enter' to exit: ");
scanf ("%c", &ch);
exit(0);

b

return 0;

30 Getting Started

Chapter 1

Chapter 2
Using the Form C Switch

Using This Chapter

This chapter uses typical examples to show ways to use the E1463A Form
C switch module for switching channels and scanning channels. See
Chapter 3 for command information. Chapter contents are:

® Form C SwitchCommands. 31
® Power-on and Reset Conditions. 32
® Module Identification. 32
® SwitchingChannels 34
® ScanningChannels 39
® Querying the Form C Switch. 42
® Using the Scan CompleteBit.......................... 42
® Savingand Recalling States. 44
® Detecting Error Conditions 45
® Synchronizing the Form C Switch. 46

NOTE All examples in this chapter use GPIB select code 7, primary address 09,
and secondary address 15 (LADDR = 120).

Form C Switch Commands

Table 2-1 explains some of the SCPI commands used in this chapter.
See Chapter 3 for more information on these commands.

Table 2-1. E1463A Form C Switch Commands Used in Chapter 2

SCPI Command Command Description

[ROUTe:]CLOSe <channel_list> | Closes the channels in the <channel_list>

[ROUTe:]CLOSe? <channel_list>| Queries the state of the channels in the <channel_list>

[ROUTe:]OPEN <channel_list> Opens the channels in the <channel_list>

[ROUTe:]OPEN? <channel_list> | Queries the state of the channels in the <channel_list>

[ROUTe:]SCAN <channel_list> Closes the channels in the <channel_list>, one at a time

INITiate[:IMMediate] Starts scan sequence and closes first channel in the <channel_list>

TRIGger:SOURce BUS | EXT | Selects the trigger source to advance the scan
HOLD | IMM | TTLT

Chapter 2 Using the Form C Switch 31

Power-on and Reset Conditions

Since the Form C switch module has nonlatching relays, all relays condition
are in the normally closed (NC) position at power-down and power-up. The
*RST command opens all channels, invalidates the current channel list for
scanning and sets the conditions shown in Table 2-2.

Table 2-2. Reset Conditions

Parameter Default Description
ARM:COUNt 1 Number of scanning cycles is 1
TRIGger:SOURce IMM Will advance scanning cycles automatically
INITiate:CONTinuous| OFF Number of scanning cycles is set by ARM:COUNt
OUTPUt[:STATe] OFF Trigger output from EXT or TTL sources is disabled

Module Identification

The following example programs use the *RST, *CLS, *IDN?, SYST:CTYP?,
and SYST:CDES commands to reset and identify the E1463A Form C
switch module. A typical print for the E1463A Form C switch is:

Example: Module 10
Identification 20
(BASIC)

30
40
50

60
70

80
90

HEWLETT-PACKARD,SWITCHBOX,0,A.04.00

32 Channel General Purpose Relay

HEWLETT-PACKARD,E1463A,0,A.04.00

DIM A$[50], B$[50], C$[50]
OUTPUT 70915;"*RST; *CLS"

OUTPUT 70915; "*IDN?"
ENTER 70915; A$
OUTPUT 70915; "SYST:CDES? 1"

ENTER 70915; B$
OUTPUT 70915; "SYST:CTYP? 1"

ENTER 70915; C$
PRINT A$, BS, C$

100 END

IDimensions three string
variables to fifty characters

/Outputs the commands to reset
and clears the status register

IQueries for module identification
IEnters the results into A$

!Outputs the command for a card
description

IEnters the results into B$

!Outputs the command for the
card type

IEnters the results into C$

IPrints the contents of variables
A$, B$, and C$

32 Using the Form C Switch

Chapter 2

Example: Module

Identification
(TURBO C)

#include stdio.h
#include chpib.h /*Include file for GPIB*/

#define ISC 7L

#define FORMC 70915L /*Form C default address*/
#define TASK1 "*RST;*CLS;*IDN?" /*Reset, clear, and query id*/
#define TASK2 "SYST:CDES? 1" /*Command for card description*/
#define TASK3 "SYST:CTYP? 1" /*Command for card type*/

main()
{
char into1[51], into2[51], into3[51];
int length = 50; /*Output and enter commands to Form C*/

error_handler (IOTIMEOUT (7L,5.0), "TIMEOUT");

error_handler (IOOUTPUTS (FORMC, TASK1, 15), "OUTPUT command");
error_handler (IOENTERS (FORMC, intol, &length), "ENTER command");

error_handler (IOOUTPUTS (FORMC, TASK2, 12), "OUTPUT command");
error_handler (IOENTERS (FORMC, into2, &length), "ENTER command");

error_handler (IOOUTPUTS (FORMC, TASK3, 12), "OUTPUT command");
error_handler (IOENTERS (FORMC, into3, &length), "ENTER command");

printf("IDENTIFICATION: %s",intol);
printf("CARD DESCRIPTION: %s",into2);
printf("CARD TYPE: %s",into3);

return;

int error_handler (int error, char *routine)
{
char ch;
if (error != NOERR)
{
printf ("\n Error %d %s \n", error, errstr(error));
printf (" in call to GPIB function %s \n\n", routine);
printf ("Press 'Enter' to exit: ");
scanf ("%c", &ch);
exit(0);
b

return 0;

}

Chapter 2

Using the Form C Switch 33

Switching Channels

Example:
Opening/Closing
Channels (BASIC)

NOTE

Example: Voltage
Switching (BASIC)

For general purpose relay operation, you can connect or disconnect a load
by opening or closing specified channel relays. By adding exterminal pull-up
resistors, the switch can be configured for digital output operations.

Use CLOS <channel_list> to connect a channel's normally open (NO)
terminal to its common (C) terminal or use OPEN channel_list to connect
a channel's normally closed (NC) contact to its common (C) terminal. The
channel_list has the form (@ccnn) where cc = card number (01-99) and
nn = channel number (00-31).

To OPEN or CLOSe multiple channels place a comma (,) between the
channel numbers. For example, to close channels 101 and 103 execute
CLOS (@101,103). To OPEN or CLOSe a continuous range of channels
place a colon (:) between the first and last channel numbers.

This BASIC program shows one way to close and open channel 2 on an
E1463A Form C module (card #1).

Implied commands are those that appear in square brackets ([]) in the
command syntax. The brackets are not part of the command and are not
sent to the instrument. For example, in the following program, ROUTe can
be eliminated and just the CLOSe command can be used.

10 DISP "TEST E1463A Module"

20 OUTPUT 70915; "ROUT:CLOS (@102)"
30 OUTPUT 70915; "ROUT:OPEN (@102)"
40 END

This example closes channel 00 of a Form C switch module to switch the
load voltage (E) from load 1 to load 2. When the channel relay is open, the
load voltage is applied to load 1. When the relay is closed, the voltage is
applied to load 2. See Figure 2-1 for typical user connections. The program
shows how to close channel 00 of the E463A Form C Switch. To open
channel 00, use OPEN (@100).

10 DISP "Testing the E1463A"

20 OUTPUT 70915; "CLOS (@100)" IClose channel 00 relay (connect
NO to C). 1 is the card number
and 00 is the channel number.

30 END

34 Using the Form C Switch

Chapter 2

E1463A TERMINAL
MODULE MODULE
I 1 |
1 I 1 |
Channel
00
1 NO 1 1 CONO | A
I C © r1 & [2] ‘
NG CONC —
=T E
E
! o ! |
%,

N J

Figure 2-1. Example: Voltage Switching

Example: Figure 2-2 shows one way to drive the 8761 SPDT RF Switches or 33300

. Series Programmable Step Attenuators. (Figure 2-2 only shows control for

Cor!trolllng RF the 33300 40 dB step. Additional drive relays are required for the 10 dB and
Switches/Step 20 dB steps.)

Attenuators The 8761A and 33300A/C operate from a 12V - 15V coil voltage, while the
(BASlC) 8761B and 33300B/D operate from a 24V - 30V coil voltage. To close
channel 00, execute the following. To open channel 00, use OPEN (@100).

10 DISP "Applying -12V"

20 OUTPUT 70915; "CLOS (@100)" IClose channel 00 relay (connect
NO to C). 1 is the card number
and 00 is the channel number.

30 END

Chapter 2 Using the Form C Switch 35

©

33300A/C Step Attenuator

8761A RF Switch or

(12V Coil Voltage)

@

8761B RF Switch or

33300B/D Step Attenuator

(24V Coil Voltage)

6205C
EXTERNAL
|/_|E14?3;__| |EQ|_V|_|[\E| D:l/;\l;PWRSU:F;t/Y
| MODULE - MODULE | -
i Chggnel i i i j'*\
| NO E i CONO E
| oo T T cone |
| i i
| N |
1 1 1 1
| | | cocC |
|] |
‘Eaesa | [TERMINAL
' MODULE ' ! MODULE '
| Channel | | |
| 00 Vo :
| QNO | | CONO |
(¢} 1 |
: NC ! L OONC
| | | |
: D :
| Lo |
i Channel i i i
01
| NO . 1 CINO
3
| c NG CINC
: (\ — :
| | | e |
| Lo |
| | | | N
| Vo | O O
| | | | EXTERNAL
| L : 24V PWR SUPPLY
| | | | 6206B

Figure 2-2. Example: Controlling RF Switches/Step Attenuators

36 Using the Form C Switch

Chapter 2

Example: Digital
Output
Configuration
(BASIC)

Example: Matrix
Switching (BASIC)

Figure 2-3 shows channel 00 configured for digital output operation.
When the channel 00 relay is open (NC connected to C), point 1 is at +V
and point 2 is at 0V. When the channel 00 relay is closed (NO connected
to C), points 1 and 2 are both at OV. To close channel 00, execute the
following. To open channel 00, use OPEN (@100).

10 DISP "Closing channel 0"

20 OUTPUT 70915; "CLOS (@100)" IClose channel 00 relay (connect
NO to C). 1 is the card number
and 00 is the channel number.

30 END
E1463A TERMINAL
MODULE MODULE
+V
| | | |
| Channel (I |
00

NO CONO
| C LI @

O
| (I CONC !
e 4 % e

| |
| | cocC |

Relay @ @

Open +V oV
Closed ov ov

N /

Figure 2-3. Example: Digital Output Configuration

The Form C switch module can be configured as a 4 x 8 single-wire matrix
to connect any combination of up to four user sources (S0, S1, S2, S3) to
any combination of up to eight user instruments (10, 11, [1...17) at a time.
To do this, make the connections shown in Table 2-3.

Table 2-3. Matrix Switching Connections

Connect These Common (C) Connect These Normally Open (NO)
Channel Numbers Together Channel Numbers Together

0,8, 16, and 24 0-7

1,9,17,and 25 8-15

2,10, 18, and 26 16 - 23

3, 11,19, and 27 24 -31

4,12, 20, and 28

Chapter 2

Using the Form C Switch 37

Table 2-3. Matrix Switching Connections

Connect These Common (C) Connect These Normally Open (NO)
Channel Numbers Together Channel Numbers Together

5,13, 21,and 29

6, 14, 22, and 30

7,15, 23, and 31

Close the channel number enclosed in the circle in Figure 2-4 to connect the
corresponding row and column. This example closes channel 25 to connect
S3 to 11 and closes channel 20 to connect S2 to 4. To close channels 20
and 25, execute the following. To open the channels, use OPEN
(@120,125).

10 DISP "Testing Switch Matrix"

20 OUTPUT 70915; "CLOS (@120,125)" IClose channels 20 and 25. 1 is
the card number; 20 and 25 are
channel numbers.

30 END
a I
[10]] 1] [12] (13] 14] 15 | 16] A
[s0] /fNo /fNo /fNo /fNo /fNo /fNo /fNo /fNo
O G I S C R S C R P (O A CO I AL O P G
[s1] /fNo /fNo /fNo /fNo /fNo /fNo /fNo /fNo
) I A Y R P CT) BV S C) B S G I R CEY R P (OB P D)
[s2] /fNo /fNo /(/’No //o/’No /fNo /fNo /fNo /fNo
vo (18 g (0 (8 f (o) o (o) () g)y @)
[s3] /fNo /fNo //’No /fNo /fNo /C/’No /fNo /fNo
o)) @)) () (o) (s
Q Close this channel to connect S to I.

o)

Figure 2-4. Example: Matrix Switching

38 Using the Form C Switch Chapter 2

Scanning Channels

For the Form C switch, scanning channels consists of closing a specified set
of channels, one channel at a time. You can scan any combination of
channels for a single-module or a multiple-module switchbox. Single,
multiple, or continuous scanning modes are available. See Chapter 3 for
additional information on scanning Form C switch channels.

Channel lists can extend across boundaries. For multiple-module switchbox
instruments, the channels to be scanned can extend across switch modules.
For example, for a two-module switchbox instrument, SCAN (@100:231 will
scan all channels of both Form C switch modules.

Use ARM:COUNt <number> to set multiple/continuous scans (from 1 to
32,767 scans). Use INITiate:CONTinuous ON to set continuous scanning.
See Chapter 3 for information about these SCPI commands.

Example: Scanning This example shows one way to synchronize instrument measurements
Using Trig In and of a device under test (DUT) with Form C switch channel closures. For

measurement synchronization, the E1406A Command Module "Trig In"

Trlg Out Ports and "Trig Out" ports are connected to the instrument "Voltmeter Complete"

(BAS'C) and "External Trigger ports. See Figure 2-5 for typical user connections.

For this example, the normally closed (NC) contacts (channels 00-02) are
connected to ground and the measurements are made on the common (C)
contacts. The command module and instrument are connected via GPIB.
The Form C switch module has a logical address 120 (secondary address
15) and the external instrument has an address of 722.

.

Command
Module
[E3]
+5V
e s
s Y — g
ov -
o
Voltmeter External .
Complete Trigger
)) [
3457A Multimeter (Rear View) K
Y /
b) 7
©o © ORU 1|
HILO | 1
HILO — o O
THREREL
E
_ NC(00,01,02) ElEIE]E] E1463A
Module
_ C(00,01,02)
E1463A
FORM-C

Terminal Module /

Figure 2-5. Example: Scanning Using Trig In and Trig Out Ports

Chapter 2

Using the Form C Switch 39

10 OUTPUT 70915; "*RST;*CLS" IReset and clear the module

20 OUTPUT 722;"TRIG EXT;DCV" IExternal trigger, dc volts
30 OUTPUT 722;"MEM FIFQO" IMemory first in, first out
40 OUTPUT 70915;"OUTP ON" IEnable "Trig Out"

50 OUTPUT 70915;"TRIG:SOUR EXT" IExternal triggering
60 OUTPUT 70915;"SCAN (@100:102)"/Scan channels 00-02

70 OUTPUT 70915;"INIT" !Enable scan

80 WAIT 2 IWait for switch closures
90 FOR Channel=1TO 3 IStart loop

100 ENTER 722;Result IEnter result

110 PRINT Result IDisplay result

120 NEXT Channel lIncrement count

130 END

Example: Scanning This example uses the E1406A Command Module TTL trigger bus lines to
. synchronize Form C channel closures to an E1412A System Multimeter.
USIn_g the TTL For measurement synchronization, the E1406A TTL trigger bus line O is
Trlgger Bus used by the Form C module to trigger the multimeter to perform a
(BAS'C) measurement and the E1406A TTL trigger bus line 1 is used by the
multimeter to advance the Form C scan.

Figure 2-6 shows one way to connect the Form C module to the E1412A
multimeter module. The connections shown with dotted lines are not actual
hardware connections. These connections indicate how the firmware
operates to accomplish the triggering.

/ Part of VXIbus \

i e e e ————— e —————— -‘
1
1
: [— e ——————— e e e ————————— " :
1 1
1 1 E1406A E1412A 1 ! ﬁ:ﬁjé
: i Command Module Multimeter Module : Y —@_L
1 1 g G 1
[E3 E1463A !
: : T Terminal Module 1
1 1 . TTLTrg0 Trigger 00 H h
1 L | 00 b - OO0 1 L
1
1 :
I-——-<-——— [=
TTLTrg1 VM
Complete
]
D %
° H—6
o)
Lo —| G
© @
0
¢}

- /

Figure 2-6. Example: Scanning Using the TTL Trigger Bus

40 Using the Form C Switch Chapter 2

The following BASIC program sets up the multimeter (GPIB address 70903)
to scan making 2-wire resistance measurements. The common terminals for
channels 0 through 2 are connected together for this example. When one of
these switches is closed (C connected to NO), different DUTs are switched
in for a measurement. Triggering is accomplished by the E1406A firmware.
The measurement is taken from the common (C) terminal.

10
20
30
40

50

60

70

80

90
100
110

120

130
140
150
160
170
180

ALLOCATE REAL Rdgs(1:3)

OUTPUT 70915; "*RST;*CLS" IReset and clear Form C switch
OUTPUT 70903; "*RST;*CLS" IReset and clear multimeter
OUTPUT 70903;"ABORT;:TRIG:SOUR TTLTRGO"

IMultimeter triggers on TTL
trigger line 0

OUTPUT 70903; "OUTP:TTLT1:STAT ON"

IMultimeter pulses TTL trigger

line 1 on measurement complete
OUTPUT 70903; "CONF:RES AUTO,DEF"

ISet multimeter function to

resistance, range, NPLC
OUTPUT 70903; "TRIG:DEL 0; COUN 3;:CAL:ZERO:AUTO ON"

ISet multimeter trigger delay,
counts, calibration state

OUTPUT 70903; "*OPC?" ! Check to see if multimeter is
ready. When ready, initialize
trigger 1.

ENTER 70903; Check

OUTPUT 70903; "INIT"
OUTPUT 70915; "OUTPUT:TTLTO:STATE ON"

ISet up the Form C. Form C
pulses TTL Trigger line 0 on
channel closed

OUTPUT 70915;"TRIG:SOUR TTLT1"

ISet Form C to be triggered by
TTL Trigger line 1.

OUTPUT 70915; "SCAN (@100:102)"

OUTPUT 70915; "INIT"

OUTPUT 70903; "FETCH?"

ENTER 70903; Rdgs(*)

PRINT Rdgs(*) IEnter and print readings
END

Chapter 2

Using the Form C Switch 41

Querying the Form C Switch

Example: Querying
Channel Closures
(BASIC)

All query commands end with a"?". These commands are used to determine
a specific state of the module. The data is sent to the output buffer where
you can retrieve it into your computer. See Chapter 3 for more information
on these commands.

Use CLOSe? <channel_list> or OPEN? <channel_list> to query the channel
state (open/closed). CLOS? returns a "1" for channel(s) closed and a "0" for
channel(s) open. OPEN? returns a "0" for channel(s) closed and a "1" for
channel(s) open. (Commands are software queries and do not account for
relay hardware failures.)

This example closes a range of channels and queries for the results.

10 DIM Channels$[32] IDimensions a string variable to
32 characters

20 OUTPUT 70915;"CLOS (@100:131)" ICloses channels 00 through 31

30 OUTPUT 70915;"CLOS? (@100:131)" /Queries to see if the channels
are closed

40 ENTER 70915; Channels$ IEnters the results from the switch
card into the variable Channels$

50 PRINT "Channels Closed:";Channels$! Prints the channels closed
(should print 1s)

60 END

Using the Scan Complete Bit

You can use the Scan Complete bit (bit 8) in the Operation Status Register
(in the command module) of a switchbox to determine when a scanning
cycle completes (no other bits in the register apply to the switchbox).

Bit 8 has a decimal value of 256 and you can read it directly with the
STAT:OPER? command. Refer to the STATus:OPERation[:EVENt]?
command in Chapter 3 for an example.

When enabled by the STAT:OPER:ENAB 256 command, the Scan
Complete bit will be reported as bit 7 of the Status Register. Use the GPIB
Serial Poll or the IEEE 488.2 Common Command *STB? to read the Status
Register.

When bit 7 of the Status Register is enabled by the *SRE 128 Common
Command to assert a GPIB Service Request, you can interrupt the
computer when the Scan Complete bit is set, after a scanning cycle
completes. This allows the computer to do other operations while the
scanning cycle is in progress.

42 Using the Form C Switch

Chapter 2

Example: Using the

Scan Complete Bit

(BASIC)

This example monitors bit 7 in the Status Register to determine when the
scanning cycle is complete. The computer interfaces with an E1406A
Command Module over GPIB. The GPIB select code is 7, the GPIB primary
address is 09, and the GPIB secondary address is 15.

10
20

30

50
60
70
80
90

100
110

120

130
140

150
160
170

180
190
200
210

OUTPUT 70915;"*RST; *CLS" IReset and clear the module
OUTPUT 70915;"STAT:OPER:ENAB 256"
IEnable Scan Complete Bit

OUTPUT 70915; "TRIG:SOUR IMM" ISet the Form C switch for
continuous triggering

OUTPUT 70915; "SCAN (@100:115)""Select channels to scan

OUTPUT 70915; "*OPC?" IWait for operation complete

ENTER 70915; A$

PRINT "*OPC? = ";A$

OUTPUT 70915;"STAT:OPER:ENAB?!Query the contents in the
operation status register

ENTER 70915; A$

PRINT "STAT:OPER:ENAB?=";A$ IPrint the contents of the
operation status register

OUTPUT 70915; "*STB?" IQuery the contents of the status
byte register

ENTER 70915; A$

PRINT "Switch Status = ";A$ IPrint the contents of the status
byte register

OUTPUT 70915; "INIT" IStart scan cycle

I=0 lInitialize the value of the counter

WHILE (I=0) IStay in loop until some value is
returned from the SPOLL (70915)
command

I = SPOLL(70915)

PRINT "Waiting for scan to complete: SPOLL = ";1
END WHILE
I = SPOLL(70915)

220 PRINT "Scan complete: SPOLL = ";I
230 END

Chapter 2

Using the Form C Switch 43

Saving and Recalling States

Example: Saving
and Recalling State
(BASIC)

The *SAV <numeric_state> command saves the current instrument state.
The state number (0-9) is specified by the <numeric_state> parameter. The
settings saved by this command are:

® Channel relay states (open or closed)
* ARM:COUNt

®* TRIGger:SOURce

® OUTPut:STATe

® INITiate:CONTinuous

The *RCL <numeric_state> command recalls the state when the last
*SAV was executed for the specified <numeric_state> parameter (0-9).

If no *SAV was executed for the <numeric_state>, *RST default settings
are used. Refer to the *SAV settings list for the settings recalled by *RCL.

This program shows how to save and recall Form C switch states.

10 DIM A$[150] IDimension a string variable for
150 characters

20 OUTPUT 70915; "CLOS (@100:131)""Close channels 00 - 31 on the
Form C switch

30 OUTPUT 70915; "*SAV 5" ISave as numeric state 5
40 OUTPUT 70915 "*RST;*CLS" IReset and clear the Form C
switch

50 OUTPUT 70915;"CLOS? (@100:131)!Query the channels closed
60 ENTER 70915;A$

70 PRINT "Channels Closed:";A$ IPrint closed channels (should
print 0s)

80 OUTPUT 70915; "*RCL 5" IRecall numeric state 5

90 OUTPUT 70915 "CLOS? (100:131)" /Query to see which channels
are closed

100 ENTER 70915;A$

110 PRINT "Channels Closed:";A$!Print closed channels
(should print 1s)

120 END

44 Using the Form C Switch

Chapter 2

Detecting Error Conditions

Example: Detecting
Error Conditions

(BASIC)

Example: Detecting
Error Conditions

(Turbo C)

The SYSTem:ERRor? query requests a value from an instrument's error
register. This register contains an integer in the range [-32,768 to 32,767].
The response takes the form <err_number>,<err_message> where
<err_number> is the value of the instrument's error and <err_message>
is a short description of the error.

This BASIC program attempts an illegal channel closure and polls for an
error message.

10 DIM Err_num$[256] IDimension a string variable for
256 characters

20 OUTPUT 70915; "CLOS (@135)" ITry to close an illegal channel

30 OUTPUT 70915; "SYST:ERR?" IQuery for a system error

40 ENTER 70915; Err_num$

50 PRINT Err_num$ IPrint error +2001, "Invalid

channel number"
60 END

This Turbo C program attempts an illegal channel closure and polls for an
error message. If no error occurs, the switchbox responds with 0, "No error".
If there has been more than one error, the instrument will respond with the
first error in its error queue. Subsequent queries continue to read the error
queue until it is empty. The maximum <err_message> string length is 255
characters.

#include stdio.h
#include chpib.h /*Include file for GPIB*/

#define ISC 7L

#define FORMC 70915L /*Form C default address*/

#define TASK1 "CLOSE (@135)"/*Command for illegal switch closure*/
#define TASK2 "SYST:ERR?" /*Command for system error*/

main()

{
char into[257];

int length = 256;
/*Output commands to Form C*/

error_handler (IOTIMEOUT (7L,5.0), "TIMEOUT");
error_handler (IOOUTPUTS (FORMC, TASK1, 12), "OUTPUT command");
error_handler (IOOUTPUTS (FORMC, TASK2, 9), "OUTPUT command");

/*Enter from Form C*/

error_handler (IOENTERS (FORMC, into, &length), "ENTER command");
printf("Print the errors: %s",into);
return;

Chapter 2

Using the Form C Switch 45

int error_handler (int error, char *routine)

{

char ch;
if (error != NOERR)
{
printf ("\n Error %d %s \n", error, errstr(error));
printf (" in call to GPIB function %s \n\n", routine);
printf ("Press 'Enter’ to exit: ");
scanf ("%c", &ch);
exit(0);
b

return 0;

Synchronizing the Form C Switch

This section gives guidelines to synchronize a Form C switch module with a
measurement instrument.

Exam ple: This BASIC program shows one way to synchronize a Form C switch

H— module with a measurement instrument. In this example, the Form C
SynChronIZIng_the switch module switches a signal to a multimeter. The program then verifies

Form C Switch the channel is closed before the multimeter begins its measurement.

(BASIC) 1o

20
30

OUTPUT 70915; "CLOS (@105)" IClose channel 5
OUTPUT 70915; "*OPC?" IWait for operation complete
ENTER 70915; Opc_value

40 OUTPUT 70915; "CLOS? (@105)" ICheck to see if channel closed

50 ENTER 70915;A

60 IF A=1 THEN

70 OUTPUT 70903;"MEAS:VOLT:DC?" IWhen channel is closed,
measure the voltage

80 ENTER 70903; Meas_value

90 PRINT Meas_value !Print the measured voltage

100 ELSE

110 PRINT "Channel did not close"

120 END IF

130 END

46 Using the Form C Switch

Chapter 2

Chapter 3
E1463A Command Reference

Using This Chapter

Command Types

Common Command
Format

SCPI Command
Format

This chapter describes Standard Commands for Programmable Instruments
(SCPI) and summarizes IEEE 488.2 Common (*) commands applicable to
the E1463A Form C Switch Module. This chapter contains the following
sections:

®Command TYPES. . . .ottt e 47
®* SCPICommand Reference 49
® SCPI Commands Quick Reference 75
®* |[EEE 488.2 Common Commands Reference.............. 76

Commands are separated into two types: IEEE 488.2 Common commands
and SCPI commands.

The IEEE 488.2 standard defines the Common commands that perform
functions like reset, self-test, status byte query, etc. Common commands
are four or five characters in length, always begin with the asterisk character
(*), and may include one or more parameters. The command keyword is
separated from the first parameter by a space character. Some examples
of Common commands are shown below:

*RST *ESE <unmask> *STB?

The SCPI commands perform functions like closing switches, opening
switches, scanning channels, querying instrument states or retrieving data.
A subsystem command structure is a hierarchical structure that usually
consists of a top level (or root) command, one or more lower-level
commands, and their parameters. The following example shows part of a
typical subsystem:

[ROUTe]
CLOSe<channel_list>
SCAN <channel_list>

:MODE?

[ROUTe:] is the root command, CLOSe and SCAN are second-level
commands with parameters, and :MODE? is a third-level command.
There must be a space between the second-level command (such as
CLOSe) and the parameter (<channel_list>).

Chapter 3

E1463A Command Reference 47

Command Separator

Abbreviated Commands

Implied Commands

Variable Command
Syntax

A colon (;) always separates one command from the next lower-level
command as shown below:

[ROUTe:]SCAN:MODE?

Colons separate the root command from the second-level command
([ROUTe:]SCAN) and the second level from the third level (SCAN:MODE?).

The command syntax shows most commands as a mixture of upper- and
lowercase letters. The uppercase letters indicate the abbreviated spelling for
the command. For shorter program lines, send the abbreviated form. For
better program readability, you may send the entire command. The
instrument will accept either the abbreviated form or the entire command.

For example, if the command syntax shows TRIGger, then TRIG and
TRIGGER are both acceptable forms. Other forms of TRIGger, such as
TRIGG or TRIGGE will generate an error. You may use uppercase or
lowercase letters. Therefore, TRIGGER, trigger, and TrigGeR are all
acceptable.

Implied commands are those that appear in square brackets ([]) in the
command syntax. (The brackets are not part of the command and are not
sent to the instrument.) Suppose you send a second-level command but do
not send the preceding implied command. In this case, the instrument
assumes you intend to use the implied command and it responds as if you
had sent it. Examine the portion of the [ROUTe:] subsystem shown below:

[ROUTe:]
CLOSe<channel_list>

The root command [ROUTe:] is an implied command (indicated by square
brackets ([])). To make a query about a channel’s present status, you can
send either of the following command statements:

ROUT:CLOSe? <channel_list> or CLOSe? <channel_list>

Some commands have what appears to be a variable syntax, such as
OUTPuUt:TTLTrgn. In this command, the "n"is replaced by a number.

No space is left between the command and the number because the number
is not a parameter.

48 E1463A Command Reference

Chapter 3

Parameters

Linking Commands

ParameterTypes. The following table contains explanations and examples of
parameter types you might see later in this chapter.

Type

Explanations and Examples

Boolean

Represents a single binary condition that is either true or
false (ON, OFF, 1.0). Any non-zero value is considered
true.

Discrete

Selects from a finite number of values. These parameters
use mnemonics to represent each valid setting. An
example is the TRIGger:SOURce <source> command
where <source> can be BUS, EXTernal, HOLD,
IMMediate, or TTLTrgn.

Numeric

Commonly used decimal representations of numbers
including optional signs, decimal points, and scientific
notation. Examples are 123, 123E2, -123, -1.23E2, .123,
1.23E-2, 1.23000E-01. Special cases include MINimum,
MAXimum, DEFault and INFinity.

Optional

Parameters shown within square brackets ([]) are optional
parameters. (The brackets are not part of the command
and are not sent to the instrument.) If you do not specify a
value for an optional parameter, the instrument chooses a
default value.

For example, consider the ARM:COUNLt? [<MIN | MAX>]
command. If you send the command without specifying a
parameter, the present ARM:COUNt value is returned. If
you send the MIN parameter, the command returns the
minimum count available. If you send the MAX parameter,
the command returns the maximum count available. Be
sure to place a space between the command and the
parameter.

Linking IEEE 488.2 Common Commands with SCPI Commands. Use a
semicolon (;) between the commands. For example, *RST;*RCL 1 or
CLOS (@101);*SAV 1

Linking Multiple SCPI Commands. Use both a semicolon (;) and a colon (:)
between the commands, such as CLOS (@101);:CLOS? (@101).

Linking Subsystem Commands. SCPI also allows several commands within
the same subsystem to be linked with a semicolon, such as ROUT:CLOS
(@101);:ROUT:CLOS? (@101) or ROUT:CLOS (@101);CLOS? (@101).

SCPI Command Reference

This section describes the Standard Commands for Programmable
Instruments (SCPI) commands for the E1463A. Commands are listed
alphabetically by subsystem and within each subsystem.

Chapter 3

E1463A Command Reference 49

ABORt

Subsystem Syntax

Comments

Example

The ABORt command stops a scan in progress when the scan is enabled
via the interface and the trigger source is TRIGger:SOURce BUS or
TRIGger:SOURce HOLD.

ABORt

ABORt Actions: The ABORt command terminates the scan and invalidates
the current channel list.

Stopping Scan Enabled Via Interface: WWhen a scan is enabled via an
interface, an interface CLEAR command can be used to stop the scan.
When the scan is enabled via the interface and TRIG:SOUR BUS or HOLD
is set, you can use ABORt to stop the scan.

Related Commands: ARM, INITiate:CONTinuous,[ROUTe:]SCAN, TRIGger

Stopping a Scan with ABORt
This example stops a continuous scan in progress.

TRIG:SOUR BUS ITrigger command will be via
backplane (bus) interface (*TRG
command generates trigger)

INIT:CONT ON ISet continuous scanning
SCAN(@100:107) IScan channels 00 to 07
INIT IStart scan, close channel 00
ABOR IAbort scan in progress

50 E1463A Command Reference

Chapter 3

ARM

Subsystem Syntax

The ARM subsystem selects the number of scanning cycles (1 to 32,767)
for each INITiate command.

ARM
:COUNt <number> MIN | MAX
:COUNt? [<MIN | MAX>]

ARM:COUNTt
ARM:COUNt <number> MIN | MAX allows scanning to occur a multiple of
times (1 to 32,767) with one INITiate command when INITiate:CONTinuous
OFF | 0 is set. MIN sets 1 cycle and MAX sets 32,767 cycles.
Parameters
Name Type Range of Values Default Value
<number> numeric 1-32,767 | MIN | MAX 1
Comments Number of Scans: Use only numeric values between 1 and 32767, MIN, or

Example

MAX for the number of scanning cycles.
Related Commands: ABORYt, INITiate[:IMMediate]

*RST Condition: ARM:COUNt 1

Setting Ten Scanning Cycles

This example sets a Form C switch for 10 scans of channels 00 through 03.
When the scan sequence completes, channels 00 through 03 (relays 00
through 03) are closed.

ARM:COUN 10 ISet 10 scans per INIT command
SCAN(@100:103) IScan channels 00 to 03
INIT IStart scan, close channel 00

Chapter 3

E1463A Command Reference 51

ARM:COUNLt?

Parameters

Comments

Example

ARM:COUNt? [<MIN | MAX>] returns the current number of scanning cycles
set by ARM:COUNL. The current number of scan cycles is returned when
MIN or MAX is not specified. With MIN or MAX as a parameter, MIN returns
"1" and MAX returns "32,767".

Name Type Range of Values Default Value

MIN | MAX numeric MIN =1, MAX = 32,767 current cycle

Related Commands: INITiate[:IMMediate]

Querying Number of Scans

This example sets a switchbox for 10 scanning cycles and queries the
number of scan cycles set. The ARM:COUN? command returns 10.

ARM:COUN 10 ISet 10 scans per INIT command
ARM:COUN? 1Query number of scans

52 E1463A Command Reference

Chapter 3

DISPlay

The DISPlay subsystem monitors the channel state of the selected module
in a switchbox. This subsystem operates with an E1406A Command Module
when a display terminal is connected.

Subsystem Syntax DISPlay
:MON:itor
:CARD <number> | AUTO
[:STATe] <mode>

DISPlay:MONitor:CARD

DISPlay:MONitor:CARD <number> | AUTO selects the module in a switchbox
to be monitored.

Parameters

Name Type Range of Values Default Value

<number> | AUTO numeric 1-99 AUTO

Comments Selecting a Specific Module to be Monitored: Use DISPlay:MONitor:CARD
to send the card number for the switchbox to be monitored.

Selecting the Present Module to be Monitored: Use DISPlay:MONitor:CARD
AUTO to select the last module addressed by a switching command (for
example, [ROUTe:]CLOSe).

*RST Conditions: DISPlay:MONitor:CARD AUTO

Example Select Module #2 in a Switchbox for Monitoring
DISP:MON:CARD 2 ISelects module #2 in a switchbox

Chapter 3 E1463A Command Reference 53

DISPlay:MONitor[:STATe]

Parameters

Comments

Example

DISPlay:MONitor[:STATe] <mode> turns the monitor mode ON or OFF.

Name Type Range of Values Default Value

<mode> boolean ON|OFF|1]0 OFF |0

Monitoring Switchbox Channels: DISPlay:MONitor:STATe ON or
DISPlay:MONitor:STATe 1 turns the monitor mode ON to show the channel
state of the selected module. DISPlay:MONitor:STATe OFF or
DISPlay:MONitor:STATe 0 turns the channel monitor OFF.

Selecting the Module to be Monitored: Use DISPlay:MONitor:CARD
<number> AUTO to select the module.

Monitor Mode with a Form C Switch: WWhen monitoring mode is turned ON,
decimal numbers representing the channels closed will be displayed at the
bottom of the display terminal. For example, if channels 3, 7, and 12 are
closed, the bottom of the display will read as follows, where the channel
numbers represent channels that are closed.

Chanlll3llll7llll ,12,,,,...etC.
*RST Condition: DISPlay:MONitor[:STATe]OFF | 0

Enabling Monitor Mode

DISP:MON:CARD 2 ISelect module #2 in a switchbox
DISP:MON 1 I'Turn monitor mode ON

54 E1463A Command Reference

Chapter 3

INITiate

Subsystem Syntax

INITiate:CONTinuous

The INITiate command subsystem selects continuous scanning cycles and
starts the scanning cycle.

INITiate
:CONTinuous <mode>
:CONTinuous?
[[IMMediate]

Parameters

Comments

INITiate:CONTinuous <mode> enables or disables continuous scanning
cycles for the switchbox.

Name Type Range of Values Default Value
<mode> boolean ON|OFF|1]0 OFF |0

Continuous Scanning Operation: Continuous scanning is enabled with
INITiate:CONTinuous ON or INITiate:CONTinuous 1. Sending
INITiate:IMMediate closes the first channel in the channel list. Each trigger
from the source specified by TRIGger:SOURce advances the scan through
the channel list. A trigger at the end of the channel list closes the first
channel in the channel list and the scan cycle repeats.

Noncontinuous Scanning Operation: Noncontinuous scanning is enabled
with INITiate:CONTinuous OFF or INITiate:CONTinuous 0. Sending
INITiate:IMMediate closes the first channel in the channel list. Each trigger
from the source specified by TRIGger:SOURce advances the scan through
the channel list. At the end of the scanning cycle, the last channel in the
channel list is opened.

Stopping Continuous Scan: See the ABORt command.
Related Commands: ABORt, ARM:COUNt, TRIGger:SOURce

*RST Condition: INITiate:CONTinuous OFF | 0

Chapter 3

E1463A Command Reference 55

Example

Enabling Continuous Scanning

This example enables continuous scanning of channels 00 through 03 of a
single-module switchbox. Since TRIGger:SOURce IMMediate (default) is
set, use an interface clear command (such as CLEAR) to stop the scan.

INIT:CONT ON IEnable continuous scanning
SCAN(@100:103) IDefine channel list
INIT IStart scan cycle, close channel 00

INITiate:CONTinuous?

Example

INITiate[:IMMediate]

INITiate:CONTinuous? queries the scanning state. With continuous scanning
enabled, the command returns "1" (ON). With continuous scanning
disabled, the command returns "0" (OFF).

Querying Continuous Scanning State

This example enables continuous scanning of a switchbox and queries the
state. Since continuous scanning is enabled, INIT:CONT? returns "1".

INIT:CONT ON IEnable continuous scanning
INIT:CONT? IQuery continuous scanning state

Comments

Example

INITiate[:IMMediate] starts the scanning process and closes the first channel
in the channel list. Successive triggers from the source specified by the
TRIGger:SOURce command advance the scan through the channel list.

Starting the Scanning Cycle: INITiate:IMMediate starts scanning by closing
the first channel in the channel list. Each trigger received advances the scan
to the next channel in the channel list. An invalid channel list definition
causes an error (see [ROUTe:]SCAN).

Stopping Scanning Cycles: See the ABORt command.

Enabling a Single Scan

This example enables a single scan of channels 00 through 03 of a
single-module switchbox. The trigger source to advance the scan is
immediate (internal) triggering set with TRIGger:SOURcelMMediate
(default).

SCAN(@100:103) !Scan channels 00 - 03

INIT IBegin scan, close channel 00
(use immediate triggering)

56 E1463A Command Reference

Chapter 3

OUTPut

The OUTPut command subsystem enables or disables the different trigger
lines of the E1406A Command Module.

Subsystem Syntax OUTPut

:EXTernal
[:STATe] <mode>
[[STATe]?

[:STATe] <mode>

[(STATe]?

:TTLTrgn (:TTLTrg0 through :TTLTrg7)
[:STATe] <mode>
[[STATe]?

OUTPut:EXTernal[:STATe]

OUTPut:EXTernal[:STATe] <mode> enables or disables the "Trig Out" port on
the E1406A Command Module.

Parameters

Name Type Range of Values Default Value

<mode> boolean ON|OFF|1]0 OFF |0

Comments Enabling "Trig Out" Port: When enabled, a pulse is output from the "Trig Out"
port after each scanned switchbox channel is closed. If disabled, a pulse is
not output from the port after channel closures. The output pulse is a +5V
negative-going pulse.

"Trig Out" Port Shared by Switchboxes: WWhen enabled, the "Trig Out" port is
pulsed by any switchbox each time a scanned channel is closed. To disable
the output for a specific module send OUTPut:EXTernal[:STATe] OFF or
OUTPut:EXTernal[:STATe] 0 for that module.

One Output Selected at a Time: Only one output (TTLTrg or EXTernal) can be
enabled at one time. Enabling a different output source will automatically
disable the active output.

Related Commands: [ROUTe:][SCAN, TRIGger:SOURce

*RST Condition: OUTPut:EXTernal[:STATe] OFF (port disabled)

Example Enabling "Trig Out" Port

OUTP:EXT ON IEnable "Trig Out" port to output
pulse after each scanned channel
is closed

Chapter 3 E1463A Command Reference 57

OUTPut:EXTernal[:STATe]?

Example

OUTPut[:STATe]

OUTPut:EXTernal[:STATe]? queries the present state of the "Trig Out" port
on the E1406A Command Module. The command returns "1" if the port is
enabled or "0" if the port is disabled.

Query "Trig Out” Port Enable State

This example enables the "Trig Out" port and queries the enable state.
OUTPut:EXTernal[:STATe]? returns "1" since the port is enabled.

OUTP:EXT ON IEnable E1406A "Trig Out" port
OUTP:EXT? IQuery port enable state

Parameters

Comments

Example

OUTPut[:STATe] <mode> enables or disables the "Trig Out" port on the
E1406A Command Module. OUTPut[:STATe] ON | 1 enables the port and
OUTPUt[:STATe] OFF | 0 disables the port. This command functions the
same as OUTPut:EXTernal[:STATe].

Name Type Range of Values Default Value

<mode> boolean ON|OFF|1]0 OFF |0

*RST Condition: OUTPut[:STATe] OFF (port disabled)

Enabling "Trig Out"” Port

OUTP ON {Enable "Trig Out" port to output
pulse after each scanned channel
is closed

58 E1463A Command Reference

Chapter 3

OUTPut[:STATe]?

Example

OUTPut[:STATe]? queries the present state of the E1406A Command
Module "Trig Out" port. The command returns "1" if the port is enabled or
"0" if the port is disabled. This command functions the same as
OUTPut:EXTernal[:STATe]?.

Query "Trig Out” Port Enable State

This example enables the E1406 A Command Module "Trig Out" port and
queries the enable state. OUTPut[:STATe]? returns "1" since the port is
enabled.

OUTP ON IEnable "Trig Out" port
OuTP? IQuery port enable state

OUTPut: TTLTrgn[:STATe]

Parameters

Comments

OUTPut:TTLTrgn[:STATe] <mode> selects and enables which TTL Trigger
bus line (0 to 7) will output a trigger when a channel is closed during a scan.
This is also used to disable a selected TTL Trigger bus line. "n" specifies the
TTL Trigger bus line (0 to 7) and <mode> enables (ON or 1) or disables
(OFF or 0) the specified TTL Trigger bus line.

Name Type Range of Values Default Value
n numeric Oto7 N/A
<mode> boolean ON|OFF|1]|0 OFF |0

Enabling TTL Trigger Bus: When enabled, a pulse is output from the selected
TTL Trigger bus line (0 to 7) after each channel in the switchbox is closed
during a scan. If disabled, a pulse is not output. The output is a
negative-going pulse.

One Output Selected at a Time: Only one output (TTLTrg or EXTernal) can be
enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if TTLTrg1 is the active output and
TTLTrg4 is enabled, TTLTrg1 will become disabled and TTLTrg4 will
become the active output.

Related Commands: [ROUTe:]SCAN, TRIGger:SOURCce,
OUTPut:TTLTrgn[:STATe]?

*RST Condition: OUTPut: TTLTrgn[:STATe] OFF (disabled)

Chapter 3

E1463A Command Reference 59

Example Enabling TTL Trigger Bus Line 7

OUTP:TTLT7:STAT 1 IEnable TTL Trigger bus line 7 to
output pulse after each scanned
channel is closed

OUTPut: TTLTrgn[:STATe]?

OUTPut:TTLTrgn[:STATe]? queries the present state of the specified TTL
Trigger bus line. The command returns "1" if the specified TTLTrg bus line
is enabled or "0" if disabled.

Example Query TTL Trigger Bus Enable State

This example enables TTL Trigger bus line 7 and queries the enable state.
OUTPUt:TTLTrgn? returns "1" since the port is enabled.

OUTP:TTLT7:STAT 1 IEnable TTL Trigger bus line 7
OUTP:TTLT 7? !Query bus enable state

60 E1463A Command Reference Chapter 3

[ROUTe:]

Subsystem Syntax

NOTE

[ROUTe:]CLOSe

The [ROUTe:] command subsystem controls switching and scanning
operations for Form C switch modules in a switchbox.

[ROUTe:]
CLOSe <channel_list>
CLOSe? <channel_list>
OPEN <channel_list>
OPEN? <channel_list>
SCAN <channel_list>

There must be a space between the second level command (CLOS, for

example) and the parameter <channel_list>.

Parameters

Comments

NOTE

[ROUTe:]CLOSe <channel_list> closes the Form C switch channels specified
by <channel_list>. <channel_list> has the form (@ccnn) where cc = card

number (01-99) and nn = channel number (00-31).

Name Type Range of Values Default Value

<channel_list> numeric cc00 - cc31 N/A

Closing Channels:

® To close a single channel use ROUT:CLOS (@ccnn)

® To close multiple channels use ROUT:CLOS (@ccnn,ccnn,...)

® To close sequential channels use ROUT:CLOS (@ccnn:ccnn)

® To close groups of sequential channels use ROUT:CLOS
(@ccnn:ccnn,ccnn:ccnn)

® or any combination of the above

Closure order for multiple channels with a single command is not
guaranteed. Channel numbers can be in the <channel_list> in any
random order.

Related Commands: [ROUTe:]JOPEN, [ROUTe:]CLOSe?

*RST Condition: All channels open.

Chapter 3

E1463A Command Reference 61

Example Closing Form C Switch Channels

This example closes channels 100 and 213 of a two-module switchbox (card
numbers 01 and 02).

CLOS(@100,213) IClose channels 100 and 213. 100

closes channel 00 of card #1 and
213 closes channel 13 of card #2.

[ROUTe:]CLOSe?

[ROUTe:]CLOSe? <channel_list> returns the current state of the channel(s)
queried. <channel_list> has the form (@ccnn) where cc = card number
(01-99) and nn = channel number (00-31). The command returns "1" if
channel(s) are closed or returns "0" if channel(s) are open.

Comments Query is Software Readback: ROUTe:CLOSe? returns the current software
state of the channel(s) specified. It does not account for relay hardware
failures.

A maximum of 128 channels can be queried at one time. If you want to query
more than 128 channels, you must enter the query data in two separate
commands.

Example Querying Channel Closure

This example closes channels 100 and 213 of a two-module switchbox and
queries channel closure. Since the channels are programmed to be closed
"1,1" is returned as a string.

CLOS(@100,213) IClose channels 100 and 213
CLOS?(@100,213) IQuery channels 100 and 213
state
[ROUTe:]OPEN
[ROUTe:]OPEN <channel_list> opens the Form C switch channels specified
by <channel_list>. <channel_list> has the form (@ccnn) where cc = card
number (01-99) and nn = channel number (00-31).
Parameters
Name Type Range of Values Default Value
<channel_list> numeric cc00 - cc31 N/A

62 E1463A Command Reference Chapter 3

Comments

Example

[ROUTe:]JOPEN?

Opening Channels:

® To open a single channel use ROUT:OPEN (@ccnn)

® To open multiple channels use ROUT:OPEN (@ccnn,ccnn,...)

® To open sequential channels use ROUT:OPEN (@ccnn:ccnn)

® To open groups of sequential channels use ROUT:OPEN
(@ccnn:ccnn,ccnn:ccnn)

® or any combination of the above

Opening Order: Opening order for multiple channels with a single command
is not guaranteed.

Related Commands: [ROUTe:]JCLOSe, [ROUTe:JOPEN?

*RST Condition: All channels open.

Opening Form C Switch Channels

This example opens channels 100 and 213 of a two-module switchbox (card
numbers 01 and 02).

OPEN(@100,213) !Open channels 100 and 213. 100
opens channel 00 of card #1 and
213 opens channel 13 of card #2.

Comments

Example

[ROUTe:]JOPEN? <channel_list> returns the current state of the channel(s)
queried. <channel_list> has the form (@ccnn) where cc = card number
(01-99) and nn = channel number (00-31). The command returns "1" if
channel(s) are open or returns "0" if channel(s) are closed.

Query is Software Readback: ROUTe:OPEN? returns the current software
state of the channel(s) specified. It does not account for relay hardware
failures.

A maximum of 128 channels can be queried at one time: If you want to query
more than 128 channels, you must enter the query data in two separate
commands.

Querying Channel Open State

This example opens channels 100 and 213 of a two-module switchbox and
queries channel 213 state. Since channel 213 is programmed to be open,
"1" is returned.

OPEN(@100,213) !Open channels 100 and 213
OPEN?(@213) IQuery channel 213 state

Chapter 3

E1463A Command Reference 63

[ROUTe:]SCAN

Parameters

Comments

NOTE

Example

[ROUTe:]SCAN <channel_list> defines the channels to be scanned.
<channel_list> has the form (@ccnn) where cc = card number 01-99) and

nn = channel number (00-31).

Name

Type

Range of Values

Default Value

<channel_list>

numeric

cc00 - cc31

N/A

Defining Scan List: When ROUTe:SCAN is executed, the channel list is
checked for valid card and channel numbers. An error is generated for an

invalid channel list.

Scanning Channels:

® To scan a single channel use ROUT:SCAN (@ccnn)

® To scan multiple channels use ROUT:SCAN (@ccnn,ccnn,...)
® To scan sequential channels use ROUT:SCAN (@ccnn:ccnn)
® To scan groups of sequential channels use ROUT:SCAN

(@ccnn:ccnn,ccnn:ccnn)
® or any combination of the above

Channel numbers can be in the <channel_list> in any random order.

Scanning Operation: When a valid channel list is defined,

INITiate[:IMMediate] begins the scan and closes the first channel in the
<channel_list>. Successive triggers from the source specified by
TRIGger:SOURce advance the scan through the <channel list>. At the

end of the scan, the last trigger opens the last channel.

Stopping Scan: See ABORt

Related Commands: TRIGger, TRIGger:SOURce

*RST Condition: All channels open.

Scanning Using External Device

See "Scanning Channels" in Chapter 2 for examples of scanning programs
using external instruments.

64 E1463A Command Reference

Chapter 3

STATus

Subsystem Syntax

The STATus subsystem reports the bit values of the OPERation Status
Register. It also allows you to unmask the bits you want reported from the
Standard Event Status Register and to read the summary bits from the
Status Byte Register.

STATus
:OPERation
:CONDition?
:ENABIle <unmask>
:ENABIe?
[:EVENTt?]
:PRESet

As shown in Figure 3-1, the STATus subsystem for the E1463A Form C
Switch includes the Status Byte Register, the Standard Event Status
Register, OPERation Status Register, and Output Queue. The Standard
Event Status Register (*ESE?) and the Status Byte Register (*STB?) are
under IEEE 488.2 control.

Status Byte Register

In the Status Byte register, the Operation Status bit (OPR), Request Service
bit (RQS), Standard Event bit (ESB), Message Available bit (MAV) and
Questionable Data bit (QUE) (bits 7, 6, 5, 4 and 3 respectively) can be
queried with the *STB? command.

Standard Event Status Register

In the Standard Event Status Register, you can use *ESE? to query the
"unmask" value (the bits to be logically ORed into the Summary bit).
The registers are queried using decimal-weighted bit values. Decimal
equivalents for bits 0 through 15 are shown in Figure 3-1.

OPERation Status Register

Using STATus:OPERation:ENABIle 256 allows only bit 8 to generate a
Summary bit from the OPERation Status Register, since the decimal value
for bit 8 is 256. The decimal values can also used in the inverse manner to
determine the bits set from the value returned by
STATus:OPERation:EVENt? or STATus:OPERation:CONDition?.

The Form C switch driver uses only bit 8 of OPERation Status Register.
This bit is called the Scan Complete bit and is set whenever a scan operation
completes. Since completion of a scan operation is an event in time, bit 8
will never appear set when STATus:OPERation:CONDition? is queried.
However, you can find bit 8 set by using STATus:OPERation:EVEN(?.

Chapter 3

E1463A Command Reference 65

NOTE:
Output Queue
P Q QUE = Questionable Data
MAV = Message Available
ESB = Standard Event
RQS = Request Service
OPR = Operation Status
C = Condition Register
EV = Event Register
EN = Enable Register
SRQ = Interface Bus
Service Request
Standard Event Status Register
*ESR?
*ESE <unmask> :
r ESE? Status Byte Register
Automatically Set at { — Power On <1> *ssp‘lgll
Power On Conditions User Request <2>
—— Command Error <4> *ggg:unmasb
) — Execution Error <8> ’
Automatically Set by .
Parser Device Dependent Error <16>
— Query Error <32>
Request Control <64> Summary
Set by *OPC { Operation Complete <128> Bit
Related Commands EV EN
are *OPC? and *WAI
System
Controller
Interface Bus
Status ;
Byte SRQ Line
SRQ
. . Summary Bit Ins(t)rf.lhrirent
OPERAation Status Register
STATus:OPERation:CONDition? SRQ
STATus:OPERation:EVEN? Instrument
STATus:OPERation:ENABle
STATus:OPERation:ENABle?
STATus:PRESet
0 — <1>
1 — <2>
2 [<4> Summary unmask examples:
3 —1 <8> Bit -
4 —— <16> . unm_ask
— — Register decimal
LS 1 | <32> bit weight
6 <64> "OR" "OR"
L7} L b1 <128> .
Scan Complete —| 8 | <256> Operation Complete ESB
9 —1 <5612>
10 - <1024> *ESE 61 unmasks ftandard event register bits 0,
11 — T <2048> | 2, 3,4 and 5 (*ESE 128 only unmasks bit 7).
|12] | 1 <4096> *SRE 128 unmasks the OPR bit (operation) in
13 —_<8192> the status byte register. This is effective
14 — <16384> only if the STAT:OPER:ENAB 256 command
15 | <32768> is executed.
c EV EN STAT:QUES:ENAB 256 unmasks the "Scan Complete"
bit.

Figure 3-1. E1463A Status System Register Diagram

66 E1463A Command Reference Chapter 3

STATus:OPERation:CONDition?

STATus:OPERation:CONDition? returns the state of the Condition Register
in the OPERation Status Register. The state represents conditions that are
part of the instrument's operation. The switch driver does not set bit 8 in the
OPERation Status Register (see STATus:OPERation[:EVENT{]?).

STATus:OPERation:ENABIe

Parameters

Comments

Example

STATus:OPERation:ENABIle <unmask> sets an enable mask to allow events
recorded in the Event Register of the OPERation Status Register to send a
Summary bit to the Status Byte Register (bit 7). For switch modules, when
bit 8 in the OPERation Status Register is set to 1 and bit 8 is enabled by
STATus:OPERation:ENABIe, bit 7 in the Status Byte Register is set to 1.

Name Type Range of Values Default Value

<unmask> numeric 0 through 65,535 N/A

Setting Bit 7 of the Status Byte Register: STATus:OPERation:ENABIe 256
sets bit 7 (OPR) of the Status Byte Register to 1 after bit 8 (Scan Complete)
of the OPERation Status Register is set to 1.

Related Commands: [ROUTe:][SCAN

Enabling Operation Status Register Bit 8

STAT:OPER:ENAB 256 IEnable bit 8 of the OPERation
Status Register to be reported to
bit 7 (OPR) in the Status Byte
Register

STATus:OPERation:ENABIle?

Comments

STATus:OPERation:ENABIe? returns the bit value of the Enable Register
within the OPERation Status Register.

Output Format: STATus:OPERation:ENABIe? returns a decimal-weighted
value from 0 to 65,535 indicating the bits set to true.

Maximum Value Returned: The value returned is the value set by
STATus:OPERation:ENABIle <unmask>. However, the maximum
decimal-weighted value used in this module is 256 (bit 8 in the Condition
Register within the OPERation Status Register is set to true).

Chapter 3

E1463A Command Reference 67

Example

Querying the Enable Register in the OPERation Status Register

STAT:OPER:ENAB? IQuery the Enable Register in the
OPERAation Status Register

STATus:OPERation[:EVENt]?

Comments

Example

STATus:PRESet

STATus:OPERation[:EVENt]? returns which bits in the Event Register within
the OPERation Status Register are set. The Event Register indicates that
a time-related instrument event has occurred.

Setting Bit 8 of the OPERation Status Register: Bit 8 (Scan Complete) is set
to 1 after a scanning cycle completes. Bit 8 returns to 0 (zero) after sending
STATus:OPERation[:EVEN{]?.

Returned Data after sending STATus:OPERation[:EVENt]?: The command
returns "+256" if bit 8 of the OPERation Status Register is setto 1. The
command returns "+0" if bit 8 of the OPERation Status Register is set to 0.

Event Register Cleared: Reading the Event Register within the OPERation
Status Register with STATus:OPERation:EVENL? clears the Event Register.

Aborting a Scan: Aborting a scan will leave bit 8 set to 0.

Related Commands: [ROUTe:][SCAN

Reading the OPERation Status Register After a Scanning Cycle

STAT:OPER? IReturn the bit values of the Event
Register within the OPERation
Status Register

read the register value +256 shows bit 8 is set to 1.

+0 shows bit 8 is set to 0.

STATus:PRESet affects only the Enable Register within the OPERation
Status Register by setting all Enable Register bits to 0. It does not affect
either the Status Byte Register or the Standard Event Status Register.
STATus:PRESet does not clear any of the Event Registers.

68 E1463A Command Reference

Chapter 3

SYSTem

The SYSTem subsystem returns the error numbers and error messages in
the error queue of a switchbox. It can also return the types and descriptions
of modules (cards) in a switchbox.

Subsystem Syntax SYSTem
:CDEScription? <number>
:CPON <number> | ALL
:CTYPe? <number>
:ERRor?

SYSTem:CDEScription?

SYSTem:CDEScription? <number> returns the description of a selected
module (card) in a switchbox.

Parameters

Name Type Range of Values Default Value

<number> numeric 1 through 99 N/A

Comments Form C Switch Module Description: SYSTem:CDEScription? returns:

"32 Channel General Purpose Relay"

Example Reading the Description of a Module

SYST:CDES? 1 IReturn description of module
card #1
SYSTem:CPON
SYSTem:CPON <number> | ALL sets the selected module (card) in a
switchbox to its power-on state.
Parameters
Name Type Range of Values Default Value
<number> numeric 1 through 99 N/A

Chapter 3 E1463A Command Reference 69

Comments

Form C Switch Power-on State: The power-on state is all channels (relays)
open. SYSTem:CPON ALL and *RST open all channels of all modules in a
switchbox, while SYSTem:CPON <number> opens the channels in only the
module (card) specified in the command.

Example Setting Module to Power-on State
SYST:CPON 1 ISet card #1 to power-on state
SYSTem:CTYPe?
SYSTem:CTYPe? <number> returns the module (card) type of a selected
module in a switchbox.
Parameters
Name Type Range of Values Default Value
<number> numeric 1 through 99 N/A
Comments E1463A Form C Switch Model Number: SYSTem:CTYPe? <number> returns
HEWLETT-PACKARD,EI463A,0,A.04.00
where the 0 after E1463A is the module serial number (always 0) and
A.04.00 is an example of the module revision code number.
Example Reading the Model Number of a Module
SYST:CTYP? 1 IReturn the model number
SYSTem:ERRor?
SYSTem:ERRor? returns the error numbers and corresponding error
messages in the error queue of a switchbox. See Appendix C for a listing
of switchbox error numbers and messages.
Comments Error Numbers/Messages in the Error Queue: Each error generated by a

switchbox stores an error number and corresponding error message in the
error queue. The error message can be up to 255 characters long.

Clearing the Error Queue: An error number/message is removed from the
queue each time SYSTem:ERRor? is sent. The errors are cleared first-in,
first-out. When the queue is empty, each following SYSTem:ERRor?
command returns +0, "No error". To clear all error numbers/messages in
the queue, execute *CLS.

70 E1463A Command Reference

Chapter 3

Maximum Error Numbers/Messages in the Error Queue: The queue holds a
maximum of 30 error numbers/messages for each switchbox. If the queue
overflows, the last error number/message in the queue is replaced by -350,
"Too many errors". The least recent error numbers/messages remain in the
queue and the most recent errors are discarded.

Example Reading the Error Queue
SYST:ERR? IQuery the error queue

Chapter 3 E1463A Command Reference 71

TRIGger

The TRIGger command subsystem controls the triggering operation of
Form C switch modules in a switchbox.

Subsystem Syntax TRIGger
[:IMMediate]
:SOURCce <source>
:SOURce?

TRIGger[:IMMediate]

TRIGger[:IMMediate] causes a trigger event to occur when the defined trigger
source is TRIGger:SOURce BUS or TRIGger:SOURce HOLD.

Comments Executing TRIGger[:IMMediate]: Before TRIGger[:IMMediate] will execute, a
channel list must be defined with [ROUTe:]SCAN <channel_list> and an
INITiate[:IMMediate] must be executed

BUS or HOLD Source Remains: If selected, TRIGger:SOURce BUS or
TRIGger:SOURce HOLD remains in effect after triggering a switchbox with
TRIGger[:IMMediate].

Related Commands: INITiate, [ROUTe:][SCAN

Example Advancing Scan Using TRIGger

This example uses TRIGger[:IMMediate] to advance the scan of a
single-module switchbox from channel 00 through 03. Since
TRIGger:SOURce HOLD is set, the scan is advanced one channel
each time TRIGger is executed.

TRIG:SOUR HOLD ISet trigger source to HOLD
SCAN(@100:103) IDefine channel list

INIT IBegin scan, close channel 00
loop statement IStart count loop

TRIG IAdvance scan to next channel
increment loop lIncrement loop count

72 E1463A Command Reference Chapter 3

TRIGger:SOURce

Parameters

Comments

TRIGger:SOURce <source> specifies the trigger source to advance the
<channel_list> during scanning.

Parameter Parameter Parameter Default
Name Type Description Value
BUS discrete *TRG or GET command IMM
EXTernal discrete "Trig In" port IMM
HOLD discrete Hold Triggering IMM
IMMediate discrete Immediate Triggering IMM
TTLTrgn numeric TTL Trigger Bus Line 0 -7 IMM

Enabling the Trigger Source: TRIGger:SOURCce only selects the trigger
source. INITiate[:IMMediate] enables the trigger source.

Using the TRIGger Command: You can use TRIGger[:IMMediate] to advance
the scan when TRIGger:SOURce BUS or TRIGger:SOURce HOLD is
selected.

Using External Trigger Inputs: With TRIGger:SOURce EXTernal selected,

only one switchbox at a time can use the external trigger input at the E1406A
"Trig In" port. The trigger input is assigned to the first switchbox requesting
the external trigger source (with a TRIGger:SOURce EXTernal command).

Assigning External Trigger: A switchbox assigned with TRIGger:SOURce
EXTernal remains assigned to that source until the switchbox trigger source
is changed to BUS, HOLD, or IMMediate. When the source is changed, the
external trigger source is available to the next switchbox requesting it (with
a TRIGger:SOURce EXTernal command). If a switchbox requests an
external trigger input already assigned to another switchbox, an error is
generated.

Using Bus Triggers: To trigger the switchbox with bus triggers when
TRIGger:SOURce BUS selected, use the IEEE 488.2 common command
*TRG or the GPIB Group Execute Trigger (GET) command.

"Trig Out" Port Shared by Switchboxes: When enabled, the E1406A
Command Module "Trig Out" port is pulsed by any switchbox each time a
scanned channel is closed. To disable the output for a specific module
send OUTPut:EXTernal[:STATe] OFF or OUTPut:EXTernal[:STATe] O for
that module.

One Output Selected at a Time: Only one output (TTLTrg or EXTernal) can be
enabled at one time. Enabling a different output source will automatically
disable the active output.

Chapter 3

E1463A Command Reference 73

Related Commands: ABORt, [ROUTe:][SCAN, OUTPut

*RST Condition: TRIGger:SOURce IMMediate

Example Scanning Using External Triggers
This example uses external triggering (TRIGger:SOURce EXTernal) to scan
channels 00 through 03 of a single-module switchbox. The trigger source to
advance the scan is the input to the "Trig In" port on the E1406A Command
Module. When INIT is executed, the scan is started and channel 00 is
closed. Then, each trigger received at the "Trig In" port advances the scan
to the next channel.
TRIG:SOUR EXT ISelect external triggering
SCAN(@100:103) IScan channels 00 through 03
INIT IBegin scan, close channel 00
trigger externally IAdvance scan to next channel

Example Scanning Using Bus Triggers
This example uses bus triggering (TRIG:SOUR BUS) to scan channels 00
through 03 of a single-module switchbox. The trigger source to advance the
scan is the *“TRG command (as set with TRIGger:SOURce BUS). When INIT
is executed, the scan is started and channel 00 is closed. Then, each *TRG
command advances the scan to the next channel.
TRIG:SOUR BUS ISelect interface (bus) triggering
SCAN(@100:103) IScan channels 00 through 03
INIT IBegin scan, close channel 00
loop statement ILoop to scan all channels
*TRG !Advance scan using bus

triggering
increment loop lIncrement loop count
TRIGger:SOURce?

TRIGger:SOURce? returns the current trigger source for the switchbox. The
command returns BUS, EXT, HOLD, IMM, or TTLTfor sources BUS,
EXTernal, HOLD, IMMediate, or TTLTrgn, respectively.

Example Querying the Trigger Source

This example sets external triggering and queries the trigger source.
Since external triggering is set, TRIG:SOUR? returns "EXT".

TRIG:SOUR EXT ISet external trigger source
TRIG:SOUR? 1Query trigger source

74 E1463A Command Reference

Chapter 3

SCPI Commands Quick Reference

The following table summarizes the SCPI Commands for the E1463A
Form C Switch module.

Command Description

ABORt ABORt Aborts a scan in progress

ARM :COUNt <number> MIN |MAX Multiple scans per INIT command
:COUNt? [MIN|MAX] Queries number of scans

DISPlay :MONitor:CARD <number> |AUTO Selects module to be monitored
:MONitor[:STATe] <mode> Selects monitor mode

INITiate :CONTinuous <mode> Enables/disables continuous scanning
:CONTinuous? Queries continuous scan state
[:IMMediate] Starts a scanning cycle

OUTPut [:EXTernal][:STATe] <mode> Enables/disables the Trig Out port on the E1406
[:EXTernal][:STATe]? Queries the external state
[:STATe] <mode> Enables/disables the Trig Out port on the E1406
[:STATe]? Queries port enable state
‘TTLTrgn[:STATe] <mode> Enables/disables the specified TTL trigger line
‘TTLTrgn[:STATe]? Queries the specified TTL trigger line

[ROUTe:] CLOSe <channel _list> Closes channel(s)
CLOSe? <channel _list> Queries channel(s) closed
OPEN <channel_list> Opens channel(s)
OPEN? <channel _list> Queries channel(s) opened
SCAN <channel_list> Defines channels for scanning

STATus :OPERation:CONDition? Returns status of the Condition Register
:OPERation:ENABIle <unmask> Enables the Operation Event Register to set a bit in the

Status Register

:OPERation:ENABIe? Query the contents in the Operation Status Register
:OPERation[:EVENt]? Returns status of the Operation Status Register
:PRESet Sets Enable Register to 0

SYSTem :CDEScription? <number> Returns description of module in a switchbox
:CTYPe? <number> Returns the module type
:CPON <number> |ALL Sets specified module to its power-on state
:ERRor? Returns error number/message to error queue

TRIGger [:IMMediate] Causes a trigger to occur

:SOURce BUS
:SOURce EXTernal
:SOURce HOLD
:SOURce IMMediate
:SOURce?

Trigger source is *“TRG

Trigger source is Trig In (on the E1406)
Hold off triggering

Continuous (internal) triggering

Query scan trigger source

Chapter 3

E1463A Command Reference 75

IEEE 488.2 Common Commands Reference

The following table lists the IEEE 488.2 Common (*) commands accepted
by the E1463A Form C Switch module. The operation of some of these
commands is described in Chapter 2 of this manual. For more information
on Common commands, refer to the user’s manual for your mainframe or to
the ANSI/IEEE Standard 488.2-1987.

Command Title Command Description

*CLS Clear Status Register Clears all status registers (see STATus:OPERation[:EVEN{]?).

*ESE Event Status Enable Enables Status Register bits.

*ESE? Event Status Enable Query Queries the current contents in the Standard Event Status Register

*ESR? Event Status Register Query | Queries and clears the current contents in the Standard Event Status
Register

*IDN? Identification Query Returns identification string of the Switchbox.

*OPC Operation Complete Sets the Request for OPC flag when all pending operations have

completed. Also, sets OPC bit in the Standard Event Status Register.

*OPC? Operation Complete Query Returns a "1" to the output queue when all pending operations have
completed. Used to synchronize between multiple instruments.

*RCL Recall Instrument State Recalls previously stored configuration.

*RST Reset Opens all channels and sets the module to a known state.

*SAV Save Instrument State Stores the current configuration in specified memory.

*SRE Service Request Enable Sets the Service Request Enable Register bits and corresponding

Serial Poll Status Register bits to generate a service request.

*SRE? Service Request Enable Queries the current contents in the Service Request Enable Register.
Query

*STB? Read Status Byte Query Queries the current contents in the Status Byte Register.

*TRG Trigger Triggers the module to advance the scan when scan is enabled and

trigger source is TRIGger:SOURce BUS.

*TST? Self-Test Query Returns +0 if self-test passes.

Returns +cc01 for firmware error.

Returns +cc02 for bus error.

Returns +cc10 if an interrupt was expected but not received.
Returns +cc11 if the busy bit was not held for 10 msec.

*WAI Wait to Continue Prevents an instrument from executing another command until the
operation caused by the previous command is finished. Since all
instruments normally perform sequential operations, executing this
command causes no change.

76 E1463A Command Reference Chapter 3

Appendix A

Form C Switch Specifications

General

Module Size / Device Type:
C-size VXIbus, Register based, A16/D16, Interrupter
(levels 1-7, jumper selectable

Power Requirements:

Voltage: 5V +12V
Peak Module Current (A) 0.10 0.60**
Dynamic Module Current (A) 0.10 0.01
Watts/slot: 10 W

Cooling/slot: 0.08 mm H,0 @ 0.42 Liter/sec for 10°C rise
Operating Temperature: 0° - 55°C
Operating Humidity: 65% RH, 0° - 40°C

Terminals:
Screw type, maximum wire size 16 AWG

Relay Life (Typical):*

Condition Number of Operations
No Load 5x 107

250 Vac, 2A, Resistive 108

250 Vac, 5A, Resistive 10°

250 Vac, 2A, p.f. = 0.4 108

250 Vac, 5A, p.f.=0.4 10

30 Vdc, 1A, Resistive >109

30 Vdc, 5A, Resistive 105

30 Vdc, 1A, L/R = 7 msec >10%

30 Vdc, 5A, L/R = 7 msec 10°

Input Characteristics

Maximum Input Voltage:
220 Vdc or 250 Vac,y,s Terminal to Terminal

220 Vdc or 250 Vac,,s Terminal to Chassis

Maximum Current per Channel (non-inductive):
5 Adc or ac s

Maximum Switchable Power per Channel:
150 W dc; 1250 VA per switch
1500 W dc; 12,500 VA per module

DC Performance

Insulation Resistance (between any two points):
>5x10% Q at 40°C, 95% RH
>5x108 Q at 25°C, 40% RH

Maximum Thermal Offset per Channel:
<7 UV (<3 LV typical)

Closed Channel Resistance:
>100 mA: <0.250 Q (<2 Q at end of relay life)
<100 mA: <20 Q

AC Performance

Capacitance:

<30 pF (Channel to Channel)
<40 pF (Channel to Common)
<25 pF (Common to Guard)

Bandwidth (-3 dB):
>10 MHz (typical)

Crosstalk (db) (for Z1 = Zs =50 Q):

Frequency <10 kHz <100kHz <1 MHz
Channel to Channel <-83 <-63 <-43
Common to NO or NC <-80 <-60 <-40
Module to Module <-100 <-100 <-90

* Relays are subject to normal wearout based on the number of operations.
** Absolute worst case when all relays are closed simultaneously.

Appendix A

Form C Switch Specifications 77

Notes:

78 Form C Switch Specifications Appendix A

Appendix B
Register-Based Programming

About This Appendix

This appendix contains the information you can use for register-based
programming of the E1463A Form C Switch. The contents include:

® Register Programming vs. SCPI Programming 79
® Addressingthe Registers, 79
® Register Descriptions 82
® Programming Examples 85

Register Programming vs. SCPI Programming

The E1463A Form C Switch is a register-based module that does not
support the VXIbus word serial protocol. When a SCPI command is sent
to the Form C switch, the E1406 Command Module parses the command
and programs the switch at the register level.

NOTE [If SCPI is used to control this module, register programming is not
recommended. The SCPI driver maintains an image of the card state.
The driver will be unaware of changes to the card state if you alter the
card state by using register writes.

Register-based programming is a series of reads and writes directly to
the Form C switch registers. This increases throughput speed since it
eliminates command parsing and allows the use of an embedded controller.
Also, if slot 0, the resource manager, and the computer GPIB interface are
provided by other devices, a C-size system can be downsized by removing
the command module.

Addressing the Registers

Register addresses for register-based devices are located in the upper 25%
of VXI A16 address space. Every VXI device (up to 256 devices) is allocated
a 32-word (64-byte) block of addresses. With five registers, the E1463A
Form C Switch uses five of the 64 addresses allocated.

Appendix B Register-Based Programming 79

The Base Address

A16 Address Space
Outside the Command
Module

A16 Address Space
Inside the Command
Module or Mainframe

When reading or writing to a switch register, a hexadecimal or decimal
register address is specified. This address consists of a base address plus
a register offset. The base address used in register-based programming
depends on whether the A16 address space is outside or inside the E1406
Command Module.

Figure B-1 shows the register address location within A16 as it might be
mapped by an embedded controller. Figure B-2 shows the location of A16
address space in the E1406 Command Module.

When the E1406 Command Module is not part of your VXIbus system (see
Figure B-1), the switch’'s base address is computed as:

C0004g + (LADDR * 64);¢ or 49,152 + (LADDR * 64)

where C0004¢ (49,152) is the starting location of the register addresses,
LADDR is the switch’s logical address, and 64 is the number of address
bytes per VXI device. For example, the switch’s factory-set logical address
is 120 (784g). If this address is not changed, the switch will have a base
address of:

C000;¢ + (120 * 64);5 = C000;¢ + 1E00;5 = DE0O ¢

or (decimal)

49,152 + (120 * 64) = 49,152 + 7680 = 56,832

When the A16 address space is inside the E1406 Command Module
(see Figure B-2), the switch’s base address is computed as:
1FC0004¢ + (LADDR * 64)1¢ OF 2,080,768 + (LADDR * 64)

where 1FC00044 (2,080,768) is the starting location of the VXI A16
addresses, LADDR is the switch’s logical address, and 64 is the number of
address bytes per register-based device. Again, the switch’s factory-set
logical address is 120. If this address is not changed, the switch module will
have a base address of:

1FC000;¢ + (120 * 64);5 = 1FC000;¢ + 1E00;¢ = 1FDE004¢
or

2,080,768 + (120 * 64) = 2,080,768 + 7680 = 2,088,448

80 Register-Based Programming

Appendix B

Register Offset The register offset is the register’s location in the block of 64 address bytes.
For example, the switch’s Status Register has an offset of 0445. When you
write a command to this register, the offset is added to the base address to
form the register address:

1FDEOO;¢ + 0415 = 1FDEO44¢ Or 2,088,448 + 4 = 2,088,452

4)

FFFF 16
~
~ FFFF 16
cooogl | REGISTER | REGISTER DESCRIPTION
ADDRESS s |LOFFSET
\ SPACE / 0816 Relay Control Register 2
\ * / 0616 Relay Control Register 1
A16 \ / 0446 Status/Control Register
ADDRESS \ / 0246 Device Type Register
SPACE \ 0046 ID Register
\ T E1463A
C000 15 A16 REGISTER MAP
(49,152)
* Base Address = COOO 15 + (Logical Address ™ 64) 16
or
0000 15 49,152 + (Logical Address*64) 10
Register Address = Base address + Register Offset

- J

Figure B-1. Registers Within A16 Address Space

4)

FFFFFF 4 ADDRESS MAP
EO0000 46 2000001 REGISTER 16-BIT WORDS
FCO00,; N OFFSET
6
// ,,,,,,,,, h 20000016 // 0846 Relay Control Register 2
/ A6 N Y. 0646 Relay Control Register 1
A24 / ADDRESS \ REGISTER / 0416 Status/Control Register
ADDRESS / SPACE \ ADDRESS 0246 Device Type Register
SPACE / \ SPﬁCE 004¢ ID Register
/ \ - E1463A
/ Y IFO000 1 IFCO00 16 A16 REGISTER MAP
oy (2,080,768)
200000 1¢ /
/
IF0000 16 * Base Address = IFC000 16 + (Logical Address*64)16
or
2,080,768 + (Logical Address® 64)10
00000046 Register Address = Base address + Register Offset

- J

Figure B-2. Registers Within the E1406 A16 Address Space

Appendix B Register-Based Programming 81

Register Descriptions

The Form C switch module contains two read registers, one read/write
register, and two write registers. This section describes each Form C
module register.

Reading and Example programs are provided at the end of this appendix that show how
Writing to the to read and write to these registers. You can read or write to the following
. orm C switch module registers.
Registers Form © switeh module regis

® Manufacturer Identification Register (base + 004¢) (read)

¢ Device Type Register (base + 024¢) (read)

¢ Status/Control Register (base + 044¢) (read or write)

® Relay Control Register for Channels 00 - 15 (base + 064¢) (write)
® Relay Control Register for Channels 16 - 31 (base + 0845) (write)

Manufacturer The Manufacturer Identification Register is at offset address 0046 and
Identification returns FFFFe. This shows that Hewlett-Packard is the manufacturer and
the module is an A16 register-based module. This register is read only.

Register
b+004¢ 151 14| 13| 12| 1 10 9 8 7 6 5 4 3 2 1 0
Write Undefined
Read Manufacturer ID - Returns FFFF, 4 = Hewlett-Packard A16 only register-based device.

Device Type The Device Type Register is at offset address 024 and returns 012144 for
Register an E1463A Form C Switch module. This register is read only.

b+024¢ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write Undefined
Read 0121 16

Status/Control The status/Control Register is at offset address 04,4 and informs the user
16
Register about the module’s status and configuration. This register is read and write.

b+044¢ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write Not Used E Not Used
Read X MS Not Used B E X X 1 1 X X

82 Register-Based Programming Appendix B

Reading the

Status/Control Register

Writing to the

Status/Control Register

NOTE

For Status/Control register reads, three bits are defined as follows.

® MODID Select (bit 14): O indicates the module has been selected
by MODID (module ID) and a 1 indicates the module has not been
selected.

® Busy (bit 7): 0 indicates the module is busy. Each relay requires
about 10 ms execution time during which the Form C switch is
busy. Bit 7 of this register is used to inform the user of a busy
condition.

® Enable (bit 6): 0 indicates the interrupt is enabled. The interrupt
generated after a channel has been closed can be disabled. Bit 6
of this register is used to inform the user of the interrupt status.

For example, if the Form C switch module is not busy (bit 7 = 1) and the
interrupt is enabled (bit 6 = 0), a read of the Status/Control Register
(base + 044¢) returns FFBF.

You can only write to bits 0 and 6 of the Status/Control Register.

® Enable (bit 6): Writing a "1" to this bit disables the interrupt function
of the module.

® Soft Reset (bit 0): Writing a "1" to this bit soft resets the module.

When writing to the registers it is necessary to write "0" to bit 0 after the
reset has been performed before any other commands can be programmed
and executed. SCPl commands take care of this automatically.

Typically, interrupts are only disabled to "peek-poke" a module. See the
appropriate command module operating manual before disabling the
interrupt. Writing a "1" to bit O resets the switch (all channels open).

Appendix B

Register-Based Programming 83

Relay Control

There are two relay control registers: Relay Control Register 1 (base + 06¢)

Register and Relay Control Register 2 (base + 084¢). These registers are used to
connect the common (C) to the normally open (NO) terminal. Reading any
Relay Control Register will always return FFFF4g regardless of the channel
states.
The numbers in the register maps indicate the channel number to be written
to. Writes to the Relay Control Registers enable you to open or close the
desired channel. For example, write a "1" to bit 2 of Relay Control Register
1 to close channel 02.
Relay Control Register Channels 00 - 15
b+064¢ 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Write CH15| CH14| CH13| CH12| CH11| CH10| CHO9| CH08| CHO7| CHO6| CHO5| CH04| CHO3| CHO02| CHO1| CHO0
Read Always returns FFEF4g
Relay Control Register Channels 16 - 31
b+084 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Write CH31| CH30| CH29| CH28| CH27| CH26| CH25| CH24| CH23| CH22| CH21| CH20| CH19| CH18| CH17| CH16
Read Always returns FFEF4g
84 Register-Based Programming Appendix B

Programming Examples

Example: Reading
the Registers

(BASIC)

This section provides example programs in BASIC and C/HP-UX, including:

* Example: Reading the Registers (BASIC)

® Example: Reading the Registers (C/HP-UX)
® Example: Making Measurements (BASIC)

® Example: Making Measurements (C/HP-UX)
® Example: Scanning Channels (BASIC)

¢ Example: Scanning Channels (C/HP-UX)

This BASIC programming example reads the Manufacturer ID Register,
Device Type Register and Status Register on the Form C switch.

10 | 3K 3k 3k 3k 3k Sk 3k Sk ok Sk Sk ok ok ok ok 3K 3K 3K 3K K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3k >k K 3k 3k ok 3k ok Sk ok ok Sk ok ok sk ok ok ko k sk k ki k
30 1 3K 3k 3k 3k 3k ok 3k 5k ok 5k 5k 5K ok 5K 5K 5K 5K K 5K K 5K K K 5K K K 5k K K K 5k >k K ok 3k >k 3k ok Sk ok ok ok ok ok ok sk k sk ok ki k k ok

40 OPTION BASE 1

50 |Set up arrays to store register names and addresses
60 DIM Reg_name$(1:3)[32], Reg_addr(1:3)

70 !

80 |Read register names and addresses into the arrays
90 READ Reg_name$(*)

100 READ Reg_addr(*)

110 !

120 !Set base address variable

130 Base_addr = DVAL("DEOQ",16)

140 !

150 Map the A16 address space in the controller

160 !

170 CONTROL 16,25;2

180 !Call the subprogram Read_regs

190 Read_regs(Base_addr, Reg_name$(*), Reg_addr(*))
200 !

210 DATA Identification register, Device register, Status register
220 DATA 00, 02, 04

230 END

300 !This subprogram steps through a loop that reads each register
310 l'and prints its contents

320 SUB Read_regs(Base_addr, Reg_name$(*), Reg_addr(*))

330 !

340 For Number = 1 to 3

350 Register = READIO(-16,Base_addr + Reg_addr(number))
360 PRINT Reg_name$(number); " = "; IVAL$(Register,16)
370 Next Number

380 SUBEND

Appendix B

Register-Based Programming 85

Example: Reading This C/HP-UX programming example reads the Manufacturer ID Register,
the Registers Device Type Register and Status Register on the Form C switch.

/****** readreg C ******/
/**/

#include <sys/vxi.h> /*source file for controller VXI drivers*/
#include <fcntl.h>
#include <stdio.h>

#define logical_address 120 /*logical address of the Form C module*/

int fd;
typedef unsigned short word;
typedef struct dev_regs{ /*set up pointers*/
unsigned short id_reg;
unsigned short device_type;
unsigned short status_reg;
unsigned short bank0_channels;
} DEV_REGS;
main()
{

/*open the controller VXI interface*/
fd=open("/dev/vxi/primary",0_RDWR);
if (fd){

perror("open");

exit(1);

b

[*retrieve the A16 pointers*/
dev=(struct dev_regs *)vxi_get_al6_addr(fd,logical_address);

/*sub to read the registers*/
read_reg(dev);
/*END of main program*/

}
/*SUB READ_REG*/

int read_reg(reg_ptr)

DEV_REGS *reg_ptr;

{

[*read the ID register*/

printf("\n ID Register = 0x%x\n",reg_ptr->id_reqg);

/*read the Device Type register*/

printf("\n Device Type Register = 0x%x\n",reg_ptr->device_type);
/*read the Status register*/

printf("\n Status Register = 0x%x\n",reg_ptr->status_reg);
return;

}

86 Register-Based Programming Appendix B

Example: Making This BASIC programming example closes bit 1 on bank 0, waits for a
Measurements measurement to be made, and then opens the channel. You must insert
your own programming code for the measurement part of this program. For
(BASIC) example, if you are using the E1411B, see the E1326B/E1411B Multimeter
User's Manual for programming examples.

10 PRRRRRRRsRsRRkkokskokkok ko kKRR KK KKKk KKK KKK KKK KoK
20 PRk MAKEMEAS HoAdAK
30 PRRRkskoRksRsRkok ko Rok kKRR koK KKk K KoK KKKk koK KKK

40 OPTION BASE 1

50 |Set up arrays to store register names and addresses
60 DIM Reg_name$(1:1)[32], Reg_addr(1:1)

70 !

80 |Read register names and address into the arrays
90 READ Reg_name$(*)

100 READ Reg_addr(*)

110 !

120 !Set base address variable

130 Base_addr = DVAL("DEOQ",16)

140 !

150 Map the A16 address space in the controller

160 CONTROL 16,25;2

170 'Call the subprogram Make_meas

180 Make_meas(Base_addr, Reg_addr(*))

190 !

200 DATA Bank0 channels register
210 DATA 06

220 END

280 !This subprogram closes bit 1 of bank0 channels, waits for the
290 !channel to be closed, makes a measurement, and then opens
300 !the relay.

310 SUB Make_meas(Base_addr, Reg_addr(*))

320 !

330 WRITEIO -16, Base_addr + Reg_addr(1); 1

340 REPEAT

350 UNTIL BIT(READIO(-16,Base_addr+4),7)

| Make Measurements

380 WRITEIO -16, Base_addr + Reg_addr(1);0
390 SUBEND

Appendix B Register-Based Programming 87

Example: Making This C/HP-UX programming example closes bit 1 on bank 0, waits for a
Measurements measurement to be made, and then opens the channel. You must insert
your own programming code for the measurement part of this program. For
(CIHP'UX) example, if you are using the E1411B, see the E1326B/E1411B Multimeter
User's Manual for programming examples.

The sub ver_time allows time for switch closures. This sub should print a
time around 10 ms. If the time is less, you must change the value of j in
the for loop. For example, instead of 10000, you might need to use 12000.

/**/

ialaie makemeas.c k[
/**/
#include <time.h>

#include <sys/vxi.h> /*source file for controller VXI drivers*/
#include <fcntl.h>

#include <stdio.h>

#define logical_address 120 /*logical address of Form C Switch*/

int fd;

typedef unsigned short word;

typedef struct dev_regs{ /*set up pointers*/
unsigned short id_reg;
unsigned short device_type;
unsigned short status_reg;
unsigned short bank0_channels;

} DEV_REGS;

main()

{

/*open the controller VXI interface*/
fd=open("/dev/vxi/primary",0_RDWR);
if (fd)X

perror("open");

exit(1);

b

[*retrieve the A16 pointers*/
dev=(struct dev_regs *)vxi_get_al6_addr(fd,logical_address);

/*sub to verify the time to close the switch*/
ver_time();

/*sub to close switch and make measurement*/
make_meas(dev);

} /* *END of main program*/

Continued on next page

88 Register-Based Programming Appendix B

/*SUB VER_TIME*/

ver_time()

{

struct timeval first,
second,
lapsed;

struct timezone tzp;
gettimeofday(&first,&tzp);
for (j=0; j<=10000; j ++);
gettimeofday ($second,&tzp);

if (first.tv_usec > second.tv_usec)

{
second.tv_usec +=1000000;

second.tv_sec--;

}

lapsed.tv_usec = second.tv_usec - first.tv_usec;
lapsed.tv_sec = second.tv_sec - first.tv_sec;

printf("Elapsed time for closing a channel is: %ld sec %ld usec \n",
lapsed.tv_sec, lapsed.tv_usec);

}
/*SUB MAKE_MEAS*/

int make_meas(reg_ptr)
DEV_REGS *reg_ptr;

{

/*close bit 1 of bank0 */
reg_ptr->bank0_channels=0x0001;

for (j=0; j<=10000; j ++); [*wait for switch to close*/
printf("\n Making Measurement");

/*make measurements*/

/*open bit 1 of bank0*/
reg_ptr->bank0_channels=0x0000;
return;

}

Appendix B Register-Based Programming

Example: Scanning
Channels (BASIC)

This BASIC programming example scans through the bank 0 channels
(closing one switch at a time) and makes measurements between switch
closures. You must insert your own programming code for the measurement
part of this program. For example, if you are using the E1411B, see the
E1326B/E1411B Multimeter User's Manual for programming examples.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210

270
280
290
300
310
320
330
340
350
360
370

420
430
440

| 3 3k 3k 3k 3k ok 3k Sk Sk Sk Sk ok ok ok ok oK oK 3K 3K K 3K 3K 3K 3K 3K 3K 3K 3K K 3k 3k >k 3k >k 3k ok Sk ok Sk sk ok sk ok ok sk ko ko k ok k

!**
OPTION BASE 1

|Set up arrays to store register names and addresses
DIM Reg_name$(1:1)[32], Reg_addr(1:1)

!

|Read register names and addresses into the arrays
READ Reg_name$(*)

READ Reg_addr(*)

|Set base address variable

Base_addr = DVAL("DEQ0",16)

!

IMap the A16 address space in the controller
CONTROL 16,25;2

| Call the subprogram Scan_meas
Scan_meas(Base_addr, Reg_addr(*))

I

DATA Bank0 channels register

DATA 06

END

| This subprogram sets all bits in bank0 open then scans through
Ibank 0, closing one channel at a time (waits for the channel to
| be closed) so a measurement can be made.
SUB Scan_meas(Base_addr, Reg_addr(*))
|
WRITEIO -16, Base_addr + Reg_addr(1);0
FORI=0to 15
WRITEIO -16, Base_addr + Reg_addr(1);2"1]
REPEAT
UNTIL BIT(READIO(-16,Base_addr+4),7)
PRINT "Making Measurements"

|Make Measurements
NEXT I

WRITEIO -16,Base_addr + Reg_addr(1);0
SUBEND

90 Register-Based Programming

Appendix B

Example: Scanning This C/HP-UX programming example scans through the bank 0 channels
Channels (C/H P-UX) (closing one switch at a time) and makes measurements between switch
closures. You must insert your own programming code for the measurement
part of this program. For example, if you are using the E1411B, see the
E1326B/E1411B Multimeter User's Manual for programming examples.

NOTE The sub ver_time allows time for the switches to close. The program should
print a time around 10 ms. If the time is less, you must change the value of
j in the for loop. For example, instead of 10000, you might need to use
12000.

The math.h include file requires a -Im option when compiling this program.

/**/

[¥¥* scanning.c *xx/
/**/
#include <time.h>

#include <math.h> /*file to perform math functions*/
#include <sys/vxi.h> /*source file for controller VXI drivers*/
#include <fentl.h>

#include <stdio.h>

#define logical_address 120 /*logical address of Form C Switch*/
#define lastch15

int fd, i, reg;

double y;

typedef unsigned short word;

typedef struct dev_regs{ /*set up pointers*/
unsigned short id_reg;
unsigned short device_type;
unsigned short status_reg;
unsigned short bank0_channels;

} DEV_REGS;

main()

{

/*open the controller VXI interface*/
fd=open("/dev/vxi/primary",0_RDWR);
if (fdX
perror("open");
exit(1);
b
[*retrieve the A16 pointers*/
dev=(struct dev_regs *)vxi_get_al6_addr(fd,logical_address);

Continued on next page

Appendix B Register-Based Programming 91

/*sub to verify the time to close the switch*/

ver_time();

/*sub to close a set of switches and make measurements*/
scan_meas(dev);

> /*END of main program*/

/*SUB VER_TIME*/

ver_time()

{

struct timeval first,
second,
lapsed;

struct timezone tzp;
gettimeofday(&first,&tzp);
for (j=0; j<=10000; j ++);
gettimeofday ($second,&tzp);
if (first.tv_usec > second.tv_usec)
{
second.tv_usec +=1000000;
second.tv_sec--;

}

lapsed.tv_usec = second.tv_usec - first.tv_usec;
lapsed.tv_sec = second.tv_sec - first.tv_sec;

printf("Elapsed time for closing a channel is: %ld sec %ld usec \n",
lapsed.tv_sec, lapsed.tv_usec);

}

/*SUB SCAN_MEAS*/
int scan_meas(reg_ptr)
DEV_REGS *reg_ptr;

{
/*set bank0 to 000 */

reg_ptr->bank0_channels=0x000;
i=0;
for (i=0;i=lastch;i ++)
{
y=i;
reg=pow(2.0,y);
reg_ptr-bank0_channels=reg;
for (j=0; j<=10000; j ++); [*wait for switch to be closed*/
printf("\n Making Measurement");

/*make measurements*/

return;

92 Register-Based Programming Appendix B

Appendix C

E1463A Error Messages

Error Types

Table C-2 lists the error messages generated by the E1463A Form C Switch
module firmware when programmed by SCPI. Errors with negative values
are governed by the SCPI standard and are categorized in Table C-1. Error
numbers with positive values are not governed by the SCPI standard. See
the E1406A Command Module User’s Manual for further details on these

errors.
Table C-1. Error Types
Range Error Types Description
-199 to -100 Command Errors (syntax and parameter errors).
-299 to -200 Execution Errors (instrument driver detected errors)
-399 to -300 Device Specific Errors (instrument driver errors that
are not command nor execution errors).
-499 to -400 Query Errors (problem in querying an instrument)

Appendix C

E1463A Error Messages 93

Error Messages

Table C-2. Error Messages

Code Error Message Potential Cause(s)
-109 Missing Parameter Sending a command requiring a channel list without the channel list.
-211 Trigger Ignored Trigger received when scan not enabled. Trigger received after scan
complete. Trigger too fast.
-213 INIT Ignored Attempting to execute an INIT command when a scan is already in
progress.
-224 lllegal Parameter Value Attempting to execute a command with a parameter not applicable to
the command.
-310 System Error, Internal Driver This error can result if an excessively long parameter list is entered.
Error.
+1500 External Trigger Source Assigning an external trigger source to a switchbox when the trigger
Already Allocated source has already been assigned to another switchbox.
+2000 Invalid Card Number Addressing a module (card) in a switchbox that is not part of the
switchbox.
+2001 Invalid Channel Number Attempting to address a channel of a module in a switchbox that is not
supported by the module (e.g., channel 99 of a multiplexer module).
+2006 Command Not Supported On Sending a command to a module (card) in a switchbox that is
This Card unsupported by the module.
+2008 Scan List Not Initialized Executing a scan without the INIT command.
+2009 Too Many Channels In Channel | Attempting to address more channels than available in the switchbox.
List
+2011 Empty Channel List No valid channels are specified in the <channel_list>.
+2012 Invalid Channel Range Invalid channel(s) specified in SCAN <channel_list> command.
Attempting to begin scanning when no valid <channel_list> is defined.
+2600 Function Not Supported On Sending a command to a module (card) in a switchbox that is not

This Card

supported by the module or switchbox.

94 E1463A Error Messages

Appendix C

Index
E1463A 32-Channel Form C Switch User’s Manual

A

abbreviated commands, 48
ABORt subsystem, 50

adding relay protection, 25
addressing registers, 79
addressing the switch, 27
ARM subsystem, 51
ARM:COUNt, 51
ARM:COUNL?, 52

attaching terminal modules, 22

B

base address, 80
base address, registers, 80

C

cautions, 14
command separator, 48
command types, 47
common commands

*CLS, 76

*ESE, 76

*ESE?, 76

*ESR?, 76

*IDN?, 76

*OPC, 76

*OPC?, 76

*RCL, 76

*RST, 76

*SAV, 76

*SRE, 76

*SRE?, 76

*STB?, 76

*TRG, 76

*TST?, 76

*WAI, 76
common commands reference, 76
common commands, format, 47
configuring terminal modules, 18
connecting user inputs, 19-20
connector pinouts, 19

D

declaration of conformity, 9
description, switch, 11
detecting error conditions, 45
Device Type register, 82
DISPlay subsystem, 53
DISPlay:MONitor:CARD, 53
DISPlay:MONitor[:STATe], 54
documentation history, 8

E

error conditions, detecting, 45

error messages, 93-94

error types, 93

examples
Advancing Scan Using TRIGger, 72
Closing a Channel (BASIC), 29
Closing a Channel (TURBO C), 29
Closing Form C Switch Channels, 62
Controlling RF Switches (BASIC), 35
Detecting Error Conditions (BASIC), 45
Detecting Error Conditions (Turbo C), 45
Digital Output Configuration (BASIC), 37
Enabling "Trig Out" Port, 57-58
Enabling a Single Scan, 56
Enabling Continuous Scanning, 56
Enabling Monitor Mode, 54
Enabling Operation Status Register Bit 8, 67
Enabling TTL Trigger Bus Line 7, 60
Making Measurements (BASIC), 87
Making Measurements (C/HP-UX), 88
Matrix Switching (BASIC), 37
Module Identification (BASIC), 32
Module Identification (TURBO C), 33
Opening Form C Switch Channels, 63
Opening/Closing Channels (BASIC), 34
Querying "Trig Out" Port Enable State, 58-59
Querying Channel Closure, 62
Querying Channel Closures (BASIC), 42
Querying Channel Open State, 63
Querying Continuous Scanning State, 56
Querying Number of Scans, 52

Index 95

E (continued)
examples (cont'd)

Querying the OPERation Status Register, 68

Querying the Trigger Source, 74

Querying TTL Trigger Bus Enable State, 60

Reading the Description of a Module, 69
Reading the Error Queue, 71

Reading the Model Number of a Module, 70
Reading the OPERation Status Register, 68

Reading the Registers (BASIC), 85
Reading the Registers (C/HP-UX), 86
Saving and Recalling State (BASIC), 44
Scanning Channels (BASIC), 90
Scanning Channels (C/HP-UX), 91
Scanning Using Bus Triggers, 74
Scanning Using External Device, 64
Scanning Using External Triggers, 74

Scanning Using Trig In/Out Ports (BASIC), 39
Scanning Using TTL Trigger Bus (BASIC), 40

Select Module for Monitoring, 53
Setting Ten Scanning Cycles, 51
Stopping a Scan with ABORt, 50

Synchronizing the Form C Switch (BASIC), 46

Using the Scan Complete Bit (BASIC), 43
Voltage Switching (BASIC), 34
extending relay life, 24

IEEE 488.2 commands reference, 76
implied commands, 48

INITiate subsystem, 55
INITiate:CONTinuous, 55
INITiate:CONTinuous?, 56
INITiate[:IMMediate], 56

installing switch in mainframe, 17
instrument, VXlbus, 11

interrupt priority, setting, 16

L

linking commands, 49
logical address switch, setting, 15

Manufacturer ID register, 82
module identification, 32

(0

offset, register, 81

operation status register, 42
operation, switch, 11

Option A3G terminal module, 18
OUTPut subsystem, 57
OUTPut:EXTernal[:STATe], 57
OUTPut:EXTernal[:STATe]?, 58
OUTPUt[:STATe], 58
OUTPuUt[:STATe]?, 59
OUTPut:TLTrgn[:STATe], 59
OUTPut:TLTrgn[:STATe]?, 60

P

parameters, 49

power-on conditions, 32
programming the switch, 27
programming, register-based, 79
protecting relays, 23

Q

querying the switch, 42

R

recalling states, 44

registers
addressing, 79
base address, 80
device type, 82
Manufacturer ID register, 82
offset, 81
Operation Status register, 42
Relay Control register, 84

register vs. SCPI programming, 79

Status/Control register, 82
types, 82
register-based programming, 79
relay configurations, 13
Relay Control register, 84
relays
adding relay protection, 25
extending relay life, 24
life factors, 23
protecting, 23
replacement strategy, 24
reset conditions, 32
restricted rights statement, 7

96 Index

R (continued)
[ROUTe:] subsystem, 61
[ROUTe:]CLOSE, 61
[ROUTe:]CLOSEe?, 62
[ROUTe:]OPEN, 62
[ROUTe:]JOPEN?, 63
[ROUTe:]SCAN, 64

S

safety symbols, 8
saving states, 44
scan complete bit, 42
scanning channels, 39
schematic diagram, 12
SCPI commands
abbreviated commands, 48
command reference, 49
command separator, 48
format, 47
implied commands, 48
linking commands, 49
parameters, 49
quick reference, 75
using, 27
variable command syntax, 48
specifications, 77
standard terminal module, description, 18
STATus subsystem, 65
STATus:OPERation:CONDition?, 67
STATus:OPERation:ENABIe, 67
STATus:OPERation:ENABIe?, 67
STATus:OPERation[:EVENt]?, 68
STATus:PRESet, 68
Status/Control register, 82
switch
addressing, 27
allowable current, 26
card numbers, 28
channel addresses, 28
configuration, 13-14
connector pinouts, 19
current, maximum, 26
description, 11
error conditions, 45
error messages, 93-94
error types, 93
installing in mainframe, 17

S (continued)
switch (cont’d)

logical address, 15

module identification, 32

operation, 11

programming, 27

power-on conditions, 32

querying, 42

recalling states, 44

relays, 12

reset conditions, 32

saving states, 44

scan complete bit, 42

scanning channels, 39

schematic, 12

SCPI commands, 31

switching channels, 34

synchronizing, 46
SYSTem subsystem, 69
SYSTem:CDEScription?, 69
SYSTem:CPON, 69
SYSTem:CTYPe?, 70
SYSTem:ERRor?, 70

T

terminal module Option A3G, description, 18
terminal modules

attaching, 22

configuring, 18

wiring, 20
TRIGger subsystem, 72
TRIGger[:IMMediate], 72
TRIGger:SOURce, 73
TRIGger:SOURce?, 74

U

user inputs, connecting, 19-20

V

variable command syntax, 48
VXlbus instrument, 11

w

WARNINGS, 8, 14
warranty statement, 7
wiring a terminal module, 20

Index 97

	Contents
	Front Matter
	Agilent Technologies Warranty Statement
	U.S. Government Restricted Rights
	Documentation History
	Safety Symbols
	Warnings
	Declaration Of Conformity

	Chapter 1 - Getting Started
	Using This Chapter
	Form C Switch Description
	Basic Operation
	Typical Configurations

	Configuring the Form C Switch
	Warnings and Cautions
	Setting the Logical Address Switch
	Setting the Interrupt Priority
	Installing the Form C Switch in a Mainframe

	Configuring a Terminal Module
	Standard Terminal Module Description
	Terminal Module Option A3G Description
	Connecting User Inputs
	Wiring a Terminal Module
	Attaching a Terminal Module to the Form C Switch

	Protecting Relays and Circuits
	Relay Life Factors
	Extending Relay Life
	Adding Relay and Circuit Protection
	Maximum Allowable Module Switch Current

	Programming the Form C Switch
	Using SCPI Commands
	Addressing the Form C Switch
	Initial Operation

	Chapter 2 - Using the Form C Switch
	Using This Chapter
	Form C Switch Commands
	Power-on and Reset Conditions
	Module Identification
	Example: Module Identification (BASIC)
	Example: Module Identification (TURBO C)

	Switching Channels
	Example: Opening/Closing Channels (BASIC)
	Example: Voltage Switching (BASIC)
	Example: Controlling RF Switches/Step Attenuators (BASIC)
	Example: Digital Output Configuration (BASIC)
	Example: Matrix Switching (BASIC)

	Scanning Channels
	Example: Scanning Using Trig In and Trig Out Ports (BASIC)
	Example: Scanning Using the TTL Trigger Bus (BASIC)

	Querying the Form C Switch
	Example: Querying Channel Closures (BASIC)

	Using the Scan Complete Bit
	Example: Using the Scan Complete Bit (BASIC)

	Saving and Recalling States
	Example: Saving and Recalling State (BASIC)

	Detecting Error Conditions
	Example: Detecting Error Conditions (BASIC)
	Example: Detecting Error Conditions (Turbo C)

	Synchronizing the Form C Switch
	Example: Synchronizing the Form C Switch (BASIC)

	Chapter 3 - E1463A Command Reference
	Using This Chapter
	Command Types
	Common Command Format
	SCPI Command Format

	SCPI Command Reference
	ABORt
	ARM
	ARM:COUNt
	ARM:COUNt?

	DISPlay
	DISPlay:MONitor:CARD
	DISPlay:MONitor[:STATe]

	INITiate
	INITiate:CONTinuous
	INITiate:CONTinuous?
	INITiate[:IMMediate]

	OUTPut
	OUTPut:EXTernal[:STATe]
	OUTPut:EXTernal[:STATe]?
	OUTPut[:STATe]
	OUTPut[:STATe]?
	OUTPut:TTLTrgn[:STATe]
	OUTPut:TTLTrgn[:STATe]?

	[ROUTe:]
	[ROUTe:]CLOSe
	[ROUTe:]CLOSe?
	[ROUTe:]OPEN
	[ROUTe:]OPEN?
	[ROUTe:]SCAN

	STATus
	STATus:OPERation:CONDition?
	STATus:OPERation:ENABle
	STATus:OPERation:ENABle?
	STATus:OPERation[:EVENt]?
	STATus:PRESet

	SYSTem
	SYSTem:CDEScription?
	SYSTem:CPON
	SYSTem:CTYPe?
	SYSTem:ERRor?

	TRIGger
	TRIGger[:IMMediate]
	TRIGger:SOURce
	TRIGger:SOURce?

	SCPI Commands Quick Reference
	IEEE 488.2 Common Commands Reference

	Appendix A - Form C Switch Specifications
	Appendix B - Register-Based Programming
	About This Appendix
	Register Programming vs. SCPI Programming
	Addressing the Registers
	The Base Address
	Register Offset

	Register Descriptions
	Reading and Writing to the Registers
	Manufacturer Identification Register
	Device Type Register
	Status/Control Register
	Relay Control Register

	Programming Examples
	Example: Reading the Registers (BASIC)
	Example: Reading the Registers (C/HP-UX)
	Example: Making Measurements (BASIC)
	Example: Making Measurements (C/HP-UX)
	Example: Scanning Channels (BASIC)
	Example: Scanning Channels (C/HP-UX)

	Appendix C - E1463A Error Messages
	Error Types
	Error Messages

	Index

